Sung Ju Hwang


2022

pdf bib
Augmenting Document Representations for Dense Retrieval with Interpolation and Perturbation
Soyeong Jeong | Jinheon Baek | Sukmin Cho | Sung Ju Hwang | Jong Park
Proceedings of the 60th Annual Meeting of the Association for Computational Linguistics (Volume 2: Short Papers)

Dense retrieval models, which aim at retrieving the most relevant document for an input query on a dense representation space, have gained considerable attention for their remarkable success. Yet, dense models require a vast amount of labeled training data for notable performance, whereas it is often challenging to acquire query-document pairs annotated by humans. To tackle this problem, we propose a simple but effective Document Augmentation for dense Retrieval (DAR) framework, which augments the representations of documents with their interpolation and perturbation. We validate the performance of DAR on retrieval tasks with two benchmark datasets, showing that the proposed DAR significantly outperforms relevant baselines on the dense retrieval of both the labeled and unlabeled documents.

2021

pdf bib
Learning to Perturb Word Embeddings for Out-of-distribution QA
Seanie Lee | Minki Kang | Juho Lee | Sung Ju Hwang
Proceedings of the 59th Annual Meeting of the Association for Computational Linguistics and the 11th International Joint Conference on Natural Language Processing (Volume 1: Long Papers)

QA models based on pretrained language models have achieved remarkable performance on various benchmark datasets. However, QA models do not generalize well to unseen data that falls outside the training distribution, due to distributional shifts. Data augmentation (DA) techniques which drop/replace words have shown to be effective in regularizing the model from overfitting to the training data. Yet, they may adversely affect the QA tasks since they incur semantic changes that may lead to wrong answers for the QA task. To tackle this problem, we propose a simple yet effective DA method based on a stochastic noise generator, which learns to perturb the word embedding of the input questions and context without changing their semantics. We validate the performance of the QA models trained with our word embedding perturbation on a single source dataset, on five different target domains. The results show that our method significantly outperforms the baseline DA methods. Notably, the model trained with ours outperforms the model trained with more than 240K artificially generated QA pairs.

2020

pdf bib
Generating Diverse and Consistent QA pairs from Contexts with Information-Maximizing Hierarchical Conditional VAEs
Dong Bok Lee | Seanie Lee | Woo Tae Jeong | Donghwan Kim | Sung Ju Hwang
Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics

One of the most crucial challenges in question answering (QA) is the scarcity of labeled data, since it is costly to obtain question-answer (QA) pairs for a target text domain with human annotation. An alternative approach to tackle the problem is to use automatically generated QA pairs from either the problem context or from large amount of unstructured texts (e.g. Wikipedia). In this work, we propose a hierarchical conditional variational autoencoder (HCVAE) for generating QA pairs given unstructured texts as contexts, while maximizing the mutual information between generated QA pairs to ensure their consistency. We validate our Information Maximizing Hierarchical Conditional Variational AutoEncoder (Info-HCVAE) on several benchmark datasets by evaluating the performance of the QA model (BERT-base) using only the generated QA pairs (QA-based evaluation) or by using both the generated and human-labeled pairs (semi-supervised learning) for training, against state-of-the-art baseline models. The results show that our model obtains impressive performance gains over all baselines on both tasks, using only a fraction of data for training.

pdf bib
Neural Mask Generator: Learning to Generate Adaptive Word Maskings for Language Model Adaptation
Minki Kang | Moonsu Han | Sung Ju Hwang
Proceedings of the 2020 Conference on Empirical Methods in Natural Language Processing (EMNLP)

We propose a method to automatically generate a domain- and task-adaptive maskings of the given text for self-supervised pre-training, such that we can effectively adapt the language model to a particular target task (e.g. question answering). Specifically, we present a novel reinforcement learning-based framework which learns the masking policy, such that using the generated masks for further pre-training of the target language model helps improve task performance on unseen texts. We use off-policy actor-critic with entropy regularization and experience replay for reinforcement learning, and propose a Transformer-based policy network that can consider the relative importance of words in a given text. We validate our Neural Mask Generator (NMG) on several question answering and text classification datasets using BERT and DistilBERT as the language models, on which it outperforms rule-based masking strategies, by automatically learning optimal adaptive maskings.

2019

pdf bib
Episodic Memory Reader: Learning What to Remember for Question Answering from Streaming Data
Moonsu Han | Minki Kang | Hyunwoo Jung | Sung Ju Hwang
Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics

We consider a novel question answering (QA) task where the machine needs to read from large streaming data (long documents or videos) without knowing when the questions will be given, which is difficult to solve with existing QA methods due to their lack of scalability. To tackle this problem, we propose a novel end-to-end deep network model for reading comprehension, which we refer to as Episodic Memory Reader (EMR) that sequentially reads the input contexts into an external memory, while replacing memories that are less important for answering unseen questions. Specifically, we train an RL agent to replace a memory entry when the memory is full, in order to maximize its QA accuracy at a future timepoint, while encoding the external memory using either the GRU or the Transformer architecture to learn representations that considers relative importance between the memory entries. We validate our model on a synthetic dataset (bAbI) as well as real-world large-scale textual QA (TriviaQA) and video QA (TVQA) datasets, on which it achieves significant improvements over rule based memory scheduling policies or an RL based baseline that independently learns the query-specific importance of each memory.