Sungsoo Park
2023
Towards Diverse and Effective Question-Answer Pair Generation from Children Storybooks
Sugyeong Eo
|
Hyeonseok Moon
|
Jinsung Kim
|
Yuna Hur
|
Jeongwook Kim
|
SongEun Lee
|
Changwoo Chun
|
Sungsoo Park
|
Heuiseok Lim
Findings of the Association for Computational Linguistics: ACL 2023
Recent advances in QA pair generation (QAG) have raised interest in applying this technique to the educational field. However, the diversity of QA types remains a challenge despite its contributions to comprehensive learning and assessment of children. In this paper, we propose a QAG framework that enhances QA type diversity by producing different interrogative sentences and implicit/explicit answers. Our framework comprises a QFS-based answer generator, an iterative QA generator, and a relevancy-aware ranker. The two generators aim to expand the number of candidates while covering various types. The ranker trained on the in-context negative samples clarifies the top-N outputs based on the ranking score. Extensive evaluations and detailed analyses demonstrate that our approach outperforms previous state-of-the-art results by significant margins, achieving improved diversity and quality. Our task-oriented processes are consistent with real-world demand, which highlights our system’s high applicability.
Search
Co-authors
- Sugyeong Eo 1
- Hyeonseok Moon 1
- Jinsung Kim 1
- Yuna Hur 1
- Jeongwook Kim 1
- show all...