Sunyam Bagga


pdf bib
“Are you kidding me?”: Detecting Unpalatable Questions on Reddit
Sunyam Bagga | Andrew Piper | Derek Ruths
Proceedings of the 16th Conference of the European Chapter of the Association for Computational Linguistics: Main Volume

Abusive language in online discourse negatively affects a large number of social media users. Many computational methods have been proposed to address this issue of online abuse. The existing work, however, tends to focus on detecting the more explicit forms of abuse leaving the subtler forms of abuse largely untouched. Our work addresses this gap by making three core contributions. First, inspired by the theory of impoliteness, we propose a novel task of detecting a subtler form of abuse, namely unpalatable questions. Second, we publish a context-aware dataset for the task using data from a diverse set of Reddit communities. Third, we implement a wide array of learning models and also investigate the benefits of incorporating conversational context into computational models. Our results show that modeling subtle abuse is feasible but difficult due to the language involved being highly nuanced and context-sensitive. We hope that future research in the field will address such subtle forms of abuse since their harm currently passes unnoticed through existing detection systems.


pdf bib
Measuring the Effects of Bias in Training Data for Literary Classification
Sunyam Bagga | Andrew Piper
Proceedings of the The 4th Joint SIGHUM Workshop on Computational Linguistics for Cultural Heritage, Social Sciences, Humanities and Literature

Downstream effects of biased training data have become a major concern of the NLP community. How this may impact the automated curation and annotation of cultural heritage material is currently not well known. In this work, we create an experimental framework to measure the effects of different types of stylistic and social bias within training data for the purposes of literary classification, as one important subclass of cultural material. Because historical collections are often sparsely annotated, much like our knowledge of history is incomplete, researchers often cannot know the underlying distributions of different document types and their various sub-classes. This means that bias is likely to be an intrinsic feature of training data when it comes to cultural heritage material. Our aim in this study is to investigate which classification methods may help mitigate the effects of different types of bias within curated samples of training data. We find that machine learning techniques such as BERT or SVM are robust against reproducing the different kinds of bias within our test data, except in the most extreme cases. We hope that this work will spur further research into the potential effects of bias within training data for other cultural heritage material beyond the study of literature.