Suqing Yan
2022
Huawei BabelTar NMT at WMT22 Biomedical Translation Task: How We Further Improve Domain-specific NMT
Weixuan Wang
|
Xupeng Meng
|
Suqing Yan
|
Ye Tian
|
Wei Peng
Proceedings of the Seventh Conference on Machine Translation (WMT)
This paper describes Huawei Artificial Intelligence Application Research Center’s neural machine translation system (“BabelTar”). Our submission to the WMT22 biomedical translation shared task covers language directions between English and the other seven languages (French, German, Italian, Spanish, Portuguese, Russian, and Chinese). During the past four years, our participation in this domain-specific track has witnessed a paradigm shift of methodology from a purely data-driven focus to embracing diversified techniques, including pre-trained multilingual NMT models, homograph disambiguation, ensemble learning, and preprocessing methods. We illustrate practical insights and measured performance improvements relating to how we further improve our domain-specific NMT system.