Susan Windisch Brown

Also published as: Susan Windisch Brown, Susan Brown, Susan W. Brown


2024

pdf bib
Tool for Constructing a Large-Scale Corpus of Code Comments and Other Source Code Annotations
Luna Peck | Susan Brown
Proceedings of the Second Workshop on Computation and Written Language (CAWL) @ LREC-COLING 2024

The sublanguage of source code annotations—explanatory natural language writing that accompanies programming source code—is little-studied in linguistics. To facilitate research into this domain, we have developed a program prototype that can extract code comments and changelogs (i.e. commit messages) from public, open-source code repositories, with automatic tokenization and part-of-speech tagging on the extracted text. The program can also automatically detect and discard “commented-out” source code in data from Python repositories, to prevent it from polluting the corpus, demonstrating that such sanitization is likely feasible for other programming languages as well. With the current tool, we have produced a 6-million word corpus of English-language comments extracted from three different programming languages: Python, C, and C++.

pdf bib
Extending VerbNet’s Verb-Specific Features to Enhance Selectional Preferences of Semantic Roles
Susan Windisch Brown
Proceedings of the Fifth International Workshop on Designing Meaning Representations @ LREC-COLING 2024

This work proposes expanding the thematic role selectional preferences used in the lexical resource VerbNet as a way to increase the available semantic information in the resource, induce semantically-based subclasses for the more generic VerbNet classes, and create new links across classes. The addition of verb-specific features in the latest version of VerbNet provides a means for adding more specific selectional preferences based on the meaning of a class’s individual member verbs. These features could refine both the instantiated class roles and the new implicit roles introduced in VerbNet version 4. We suggest 49 classes that would benefit from 111 verb-specific selectional preferences and explain how they would enhance VerbNet’s semantic representations.

pdf bib
PropBank goes Public: Incorporation into Wikidata
Elizabeth Spaulding | Kathryn Conger | Anatole Gershman | Mahir Morshed | Susan Windisch Brown | James Pustejovsky | Rosario Uceda-Sosa | Sijia Ge | Martha Palmer
Proceedings of The 18th Linguistic Annotation Workshop (LAW-XVIII)

This paper presents the first integration of PropBank role information into Wikidata, in order to provide a novel resource for information extraction, one combining Wikidata’s ontological metadata with PropBank’s rich argument structure encoding for event classes. We discuss a technique for PropBank augmentation to existing eventive Wikidata items, as well as identification of gaps in Wikidata’s coverage based on manual examination of over 11,300 PropBank rolesets. We propose five new Wikidata properties to integrate PropBank structure into Wikidata so that the annotated mappings can be added en masse. We then outline the methodology and challenges of this integration, including annotation with the combined resources.

pdf bib
GLAMR: Augmenting AMR with GL-VerbNet Event Structure
Jingxuan Tu | Timothy Obiso | Bingyang Ye | Kyeongmin Rim | Keer Xu | Liulu Yue | Susan Windisch Brown | Martha Palmer | James Pustejovsky
Proceedings of the 2024 Joint International Conference on Computational Linguistics, Language Resources and Evaluation (LREC-COLING 2024)

This paper introduces GLAMR, an Abstract Meaning Representation (AMR) interpretation of Generative Lexicon (GL) semantic components. It includes a structured subeventual interpretation of linguistic predicates, and encoding of the opposition structure of property changes of event arguments. Both of these features are recently encoded in VerbNet (VN), and form the scaffolding for the semantic form associated with VN frame files. We develop a new syntax, concepts, and roles for subevent structure based on VN for connecting subevents to atomic predicates. Our proposed extension is compatible with current AMR specification. We also present an approach to automatically augment AMR graphs by inserting subevent structure of the predicates and identifying the subevent arguments from the semantic roles. A pilot annotation of GLAMR graphs of 65 documents (486 sentences), based on procedural texts as a source, is presented as a public dataset. The annotation includes subevents, argument property change, and document-level anaphoric links. Finally, we provide baseline models for converting text to GLAMR and vice versa, along with the application of GLAMR for generating enriched paraphrases with details on subevent transformation and arguments that are not present in the surface form of the texts.

pdf bib
Language Resources From Prominent Born-Digital Humanities Texts are Still Needed in the Age of LLMs
Natalie Hervieux | Peiran Yao | Susan Brown | Denilson Barbosa
Proceedings of the 4th International Conference on Natural Language Processing for Digital Humanities

The digital humanities (DH) community fundamentally embraces the use of computerized tools for the study and creation of knowledge related to language, history, culture, and human values, in which natural language plays a prominent role. Many successful DH tools rely heavily on Natural Language Processing methods, and several efforts exist within the DH community to promote the use of newer and better tools. Nevertheless, most NLP research is driven by web corpora that are noticeably different from texts commonly found in DH artifacts, which tend to use richer language and refer to rarer entities. Thus, the near-human performance achieved by state-of-the-art NLP tools on web texts might not be achievable on DH texts. We introduce a dataset carefully created by computer scientists and digital humanists intended to serve as a reference point for the development and evaluation of NLP tools. The dataset is a subset of a born-digital textbase resulting from a prominent and ongoing experiment in digital literary history, containing thousands of multi-sentence excerpts that are suited for information extraction tasks. We fully describe the dataset and show that its language is demonstrably different than the corpora normally used in training language resources in the NLP community.

2023

pdf bib
Human-in-the-loop Schema Induction
Tianyi Zhang | Isaac Tham | Zhaoyi Hou | Jiaxuan Ren | Leon Zhou | Hainiu Xu | Li Zhang | Lara J. Martin | Rotem Dror | Sha Li | Heng Ji | Martha Palmer | Susan Windisch Brown | Reece Suchocki | Chris Callison-Burch
Proceedings of the 61st Annual Meeting of the Association for Computational Linguistics (Volume 3: System Demonstrations)

Schema induction builds a graph representation explaining how events unfold in a scenario. Existing approaches have been based on information retrieval (IR) and information extraction (IE), often with limited human curation. We demonstrate a human-in-the-loop schema induction system powered by GPT-3. We first describe the different modules of our system, including prompting to generate schematic elements, manual edit of those elements, and conversion of those into a schema graph. By qualitatively comparing our system to previous ones, we show that our system not only transfers to new domains more easily than previous approaches, but also reduces efforts of human curation thanks to our interactive interface.

pdf bib
RESIN-EDITOR: A Schema-guided Hierarchical Event Graph Visualizer and Editor
Khanh Duy Nguyen | Zixuan Zhang | Reece Suchocki | Sha Li | Martha Palmer | Susan Windisch Brown | Jiawei Han | Heng Ji
Proceedings of the 2023 Conference on Empirical Methods in Natural Language Processing: System Demonstrations

In this paper, we present RESIN-EDITOR, an interactive event graph visualizer and editor designed for analyzing complex events. Our RESIN-EDITOR system allows users to render and freely edit hierarchical event graphs extracted from multimedia and multi-document news clusters with guidance from human-curated event schemas. RESIN-EDITOR’s unique features include hierarchical graph visualization, comprehensive source tracing, and interactive user editing, which significantly outperforms existing Information Extraction (IE) visualization tools in both IE result analysis and general model improvements. In our evaluation of RESIN-EDITOR, we demonstrate ways in which our tool is effective in understanding complex events and enhancing system performances. The source code, a video demonstration, and a live website for RESIN-EDITOR have been made publicly available.

pdf bib
Learning Semantic Role Labeling from Compatible Label Sequences
Tao Li | Ghazaleh Kazeminejad | Susan Brown | Vivek Srikumar | Martha Palmer
Findings of the Association for Computational Linguistics: EMNLP 2023

Semantic role labeling (SRL) has multiple disjoint label sets, e.g., VerbNet and PropBank. Creating these datasets is challenging, therefore a natural question is how to use each one to help the other. Prior work has shown that cross-task interaction helps, but only explored multitask learning so far. A common issue with multi-task setup is that argument sequences are still separately decoded, running the risk of generating structurally inconsistent label sequences (as per lexicons like Semlink). In this paper, we eliminate such issue with a framework that jointly models VerbNet and PropBank labels as one sequence. In this setup, we show that enforcing Semlink constraints during decoding constantly improves the overall F1. With special input constructions, our joint model infers VerbNet arguments from given PropBank arguments with over 99 F1. For learning, we propose a constrained marginal model that learns with knowledge defined in Semlink to further benefit from the large amounts of PropBank-only data. On the joint benchmark based on CoNLL05, our models achieve state-of-the-art F1’s, outperforming the prior best in-domain model by 3.5 (VerbNet) and 0.8 (PropBank). For out-of-domain generalization, our models surpass the prior best by 3.4 (VerbNet) and 0.2 (PropBank).

pdf bib
The DARPA Wikidata Overlay: Wikidata as an ontology for natural language processing
Elizabeth Spaulding | Kathryn Conger | Anatole Gershman | Rosario Uceda-Sosa | Susan Windisch Brown | James Pustejovsky | Peter Anick | Martha Palmer
Proceedings of the 19th Joint ACL-ISO Workshop on Interoperable Semantics (ISA-19)

With 102,530,067 items currently in its crowd-sourced knowledge base, Wikidata provides NLP practitioners a unique and powerful resource for inference and reasoning over real-world entities. However, because Wikidata is very entity focused, events and actions are often labeled with eventive nouns (e.g., the process of diagnosing a person’s illness is labeled “diagnosis”), and the typical participants in an event are not described or linked to that event concept (e.g., the medical professional or patient). Motivated by a need for an adaptable, comprehensive, domain-flexible ontology for information extraction, including identifying the roles entities are playing in an event, we present a curated subset of Wikidata in which events have been enriched with PropBank roles. To enable richer narrative understanding between events from Wikidata concepts, we have also provided a comprehensive mapping from temporal Qnodes and Pnodes to the Allen Interval Temporal Logic relations.

2022

pdf bib
Stability of Forensic Text Comparison System
Susan Brown | Shunichi Ishihara
Proceedings of the 20th Annual Workshop of the Australasian Language Technology Association

2021

pdf bib
A Graphical Interface for Curating Schemas
Piyush Mishra | Akanksha Malhotra | Susan Windisch Brown | Martha Palmer | Ghazaleh Kazeminejad
Proceedings of the 59th Annual Meeting of the Association for Computational Linguistics and the 11th International Joint Conference on Natural Language Processing: System Demonstrations

Much past work has focused on extracting information like events, entities, and relations from documents. Very little work has focused on analyzing these results for better model understanding. In this paper, we introduce a curation interface that takes an Information Extraction (IE) system’s output in a pre-defined format and generates a graphical representation of its elements. The interface supports editing while curating schemas for complex events like Improvised Explosive Device (IED) based scenarios. We identify various schemas that either have linear event chains or contain parallel events with complicated temporal ordering. We iteratively update an induced schema to uniquely identify events specific to it, add optional events around them, and prune unnecessary events. The resulting schemas are improved and enriched versions of the machine-induced versions.

pdf bib
SemLink 2.0: Chasing Lexical Resources
Kevin Stowe | Jenette Preciado | Kathryn Conger | Susan Windisch Brown | Ghazaleh Kazeminejad | James Gung | Martha Palmer
Proceedings of the 14th International Conference on Computational Semantics (IWCS)

The SemLink resource provides mappings between a variety of lexical semantic ontologies, each with their strengths and weaknesses. To take advantage of these differences, the ability to move between resources is essential. This work describes advances made to improve the usability of the SemLink resource: the automatic addition of new instances and mappings, manual corrections, sense-based vectors and collocation information, and architecture built to automatically update the resource when versions of the underlying resources change. These updates improve coverage, provide new tools to leverage the capabilities of these resources, and facilitate seamless updates, ensuring the consistency and applicability of these mappings in the future.

pdf bib
RESIN: A Dockerized Schema-Guided Cross-document Cross-lingual Cross-media Information Extraction and Event Tracking System
Haoyang Wen | Ying Lin | Tuan Lai | Xiaoman Pan | Sha Li | Xudong Lin | Ben Zhou | Manling Li | Haoyu Wang | Hongming Zhang | Xiaodong Yu | Alexander Dong | Zhenhailong Wang | Yi Fung | Piyush Mishra | Qing Lyu | Dídac Surís | Brian Chen | Susan Windisch Brown | Martha Palmer | Chris Callison-Burch | Carl Vondrick | Jiawei Han | Dan Roth | Shih-Fu Chang | Heng Ji
Proceedings of the 2021 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies: Demonstrations

We present a new information extraction system that can automatically construct temporal event graphs from a collection of news documents from multiple sources, multiple languages (English and Spanish for our experiment), and multiple data modalities (speech, text, image and video). The system advances state-of-the-art from two aspects: (1) extending from sentence-level event extraction to cross-document cross-lingual cross-media event extraction, coreference resolution and temporal event tracking; (2) using human curated event schema library to match and enhance the extraction output. We have made the dockerlized system publicly available for research purpose at GitHub, with a demo video.

2019

pdf bib
VerbNet Representations: Subevent Semantics for Transfer Verbs
Susan Windisch Brown | Julia Bonn | James Gung | Annie Zaenen | James Pustejovsky | Martha Palmer
Proceedings of the First International Workshop on Designing Meaning Representations

This paper announces the release of a new version of the English lexical resource VerbNet with substantially revised semantic representations designed to facilitate computer planning and reasoning based on human language. We use the transfer of possession and transfer of information event representations to illustrate both the general framework of the representations and the types of nuances the new representations can capture. These representations use a Generative Lexicon-inspired subevent structure to track attributes of event participants across time, highlighting oppositions and temporal and causal relations among the subevents.

2018

pdf bib
Automatically Extracting Qualia Relations for the Rich Event Ontology
Ghazaleh Kazeminejad | Claire Bonial | Susan Windisch Brown | Martha Palmer
Proceedings of the 27th International Conference on Computational Linguistics

Commonsense, real-world knowledge about the events that entities or “things in the world” are typically involved in, as well as part-whole relationships, is valuable for allowing computational systems to draw everyday inferences about the world. Here, we focus on automatically extracting information about (1) the events that typically bring about certain entities (origins), (2) the events that are the typical functions of entities, and (3) part-whole relationships in entities. These correspond to the agentive, telic and constitutive qualia central to the Generative Lexicon. We describe our motivations and methods for extracting these qualia relations from the Suggested Upper Merged Ontology (SUMO) and show that human annotators overwhelmingly find the information extracted to be reasonable. Because ontologies provide a way of structuring this information and making it accessible to agents and computational systems generally, efforts are underway to incorporate the extracted information to an ontology hub of Natural Language Processing semantic role labeling resources, the Rich Event Ontology.

pdf bib
Integrating Generative Lexicon Event Structures into VerbNet
Susan Windisch Brown | James Pustejovsky | Annie Zaenen | Martha Palmer
Proceedings of the Eleventh International Conference on Language Resources and Evaluation (LREC 2018)

pdf bib
Proceedings of the Workshop Events and Stories in the News 2018
Tommaso Caselli | Ben Miller | Marieke van Erp | Piek Vossen | Martha Palmer | Eduard Hovy | Teruko Mitamura | David Caswell | Susan W. Brown | Claire Bonial
Proceedings of the Workshop Events and Stories in the News 2018

2017

pdf bib
The Rich Event Ontology
Susan Brown | Claire Bonial | Leo Obrst | Martha Palmer
Proceedings of the Events and Stories in the News Workshop

In this paper we describe a new lexical semantic resource, The Rich Event On-tology, which provides an independent conceptual backbone to unify existing semantic role labeling (SRL) schemas and augment them with event-to-event causal and temporal relations. By unifying the FrameNet, VerbNet, Automatic Content Extraction, and Rich Entities, Relations and Events resources, the ontology serves as a shared hub for the disparate annotation schemas and therefore enables the combination of SRL training data into a larger, more diverse corpus. By adding temporal and causal relational information not found in any of the independent resources, the ontology facilitates reasoning on and across documents, revealing relationships between events that come together in temporal and causal chains to build more complex scenarios. We envision the open resource serving as a valuable tool for both moving from the ontology to text to query for event types and scenarios of interest, and for moving from text to the ontology to access interpretations of events using the combined semantic information housed there.

2016

pdf bib
Multimodal Use of an Upper-Level Event Ontology
Claire Bonial | David Tahmoush | Susan Windisch Brown | Martha Palmer
Proceedings of the Fourth Workshop on Events

2014

pdf bib
The IMAGACT Visual Ontology. An Extendable Multilingual Infrastructure for the representation of lexical encoding of Action
Massimo Moneglia | Susan Brown | Francesca Frontini | Gloria Gagliardi | Fahad Khan | Monica Monachini | Alessandro Panunzi
Proceedings of the Ninth International Conference on Language Resources and Evaluation (LREC'14)

Action verbs have many meanings, covering actions in different ontological types. Moreover, each language categorizes action in its own way. One verb can refer to many different actions and one action can be identified by more than one verb. The range of variations within and across languages is largely unknown, causing trouble for natural language processing tasks. IMAGACT is a corpus-based ontology of action concepts, derived from English and Italian spontaneous speech corpora, which makes use of the universal language of images to identify the different action types extended by verbs referring to action in English, Italian, Chinese and Spanish. This paper presents the infrastructure and the various linguistic information the user can derive from it. IMAGACT makes explicit the variation of meaning of action verbs within one language and allows comparisons of verb variations within and across languages. Because the action concepts are represented with videos, extension into new languages beyond those presently implemented in IMAGACT is done using competence-based judgments by mother-tongue informants without intense lexicographic work involving underdetermined semantic description

2011

pdf bib
VerbNet Class Assignment as a WSD Task
Susan Windisch Brown | Dmitriy Dligach | Martha Palmer
Proceedings of the Ninth International Conference on Computational Semantics (IWCS 2011)

pdf bib
Incorporating Coercive Constructions into a Verb Lexicon
Claire Bonial | Susan Windisch Brown | Jena D. Hwang | Christopher Parisien | Martha Palmer | Suzanne Stevenson
Proceedings of the ACL 2011 Workshop on Relational Models of Semantics

2010

pdf bib
Number or Nuance: Which Factors Restrict Reliable Word Sense Annotation?
Susan Windisch Brown | Travis Rood | Martha Palmer
Proceedings of the Seventh International Conference on Language Resources and Evaluation (LREC'10)

This study attempts to pinpoint the factors that restrict reliable word sense annotation, focusing on the influence of the number of senses annotators use and the semantic granularity of those senses. Both of these factors may be possible causes of low interannotator agreement (ITA) when tagging with fine-grained word senses, and, consequently, low WSD system performance (Ng et al., 1999; Snyder & Palmer, 2004; Chklovski & Mihalcea, 2002). If number of senses is the culprit, modifying the task to show fewer senses at a time could improve annotator reliability. However, if overly nuanced distinctions are the problem, then more general, coarse-grained distinctions may be necessary for annotator success and may be all that is needed to supply systems with the types of distinctions that people make. We describe three experiments that explore the role of these factors in annotation performance. Our results indicate that of these two factors, only the granularity of the senses restricts interannotator agreement, with broader senses resulting in higher annotation reliability.

2009

pdf bib
VerbNet overview, extensions, mappings and applications
Karin Kipper Schuler | Anna Korhonen | Susan Brown
Proceedings of Human Language Technologies: The 2009 Annual Conference of the North American Chapter of the Association for Computational Linguistics, Companion Volume: Tutorial Abstracts

2008

pdf bib
Choosing Sense Distinctions for WSD: Psycholinguistic Evidence
Susan Windisch Brown
Proceedings of ACL-08: HLT, Short Papers

pdf bib
Invited Talk: The Relevance of a Cognitive Model of the Mental Lexicon to Automatic Word Sense Disambiguation
Martha Palmer | Susan Brown
Coling 2008: Proceedings of the workshop on Human Judgements in Computational Linguistics

2007

pdf bib
Criteria for the Manual Grouping of Verb Senses
Cecily Jill Duffield | Jena D. Hwang | Susan Windisch Brown | Dmitriy Dligach | Sarah E. Vieweg | Jenny Davis | Martha Palmer
Proceedings of the Linguistic Annotation Workshop