Sven Schmeier


2024

pdf bib
Towards ML-supported Triage Prediction in Real-World Emergency Room Scenarios
Faraz Maschhur | Klaus Netter | Sven Schmeier | Katrin Ostermann | Rimantas Palunis | Tobias Strapatsas | Roland Roller
Proceedings of the 23rd Workshop on Biomedical Natural Language Processing

In emergency wards, patients are prioritized by clinical staff according to the urgency of their medical condition. This can be achieved by categorizing patients into different labels of urgency ranging from immediate to not urgent. However, in order to train machine learning models offering support in this regard, there is more than approaching this as a multi-class problem. This work explores the challenges and obstacles of automatic triage using anonymized real-world multi-modal ambulance data in Germany.

2020

pdf bib
From Witch’s Shot to Music Making Bones - Resources for Medical Laymen to Technical Language and Vice Versa
Laura Seiffe | Oliver Marten | Michael Mikhailov | Sven Schmeier | Sebastian Möller | Roland Roller
Proceedings of the Twelfth Language Resources and Evaluation Conference

Many people share information in social media or forums, like food they eat, sports activities they do or events which have been visited. Information we share online unveil directly or indirectly information about our lifestyle and health situation. Particularly when text input is getting longer or multiple messages can be linked to each other. Those information can be then used to detect possible risk factors of diseases or adverse drug reactions of medications. However, as most people are not medical experts, language used might be more descriptive rather than the precise medical expression as medics do. To detect and use those relevant information, laymen language has to be translated and/or linked against the corresponding medical concept. This work presents baseline data sources in order to address this challenge for German language. We introduce a new dataset which annotates medical laymen and technical expressions in a patient forum, along with a set of medical synonyms and definitions, and present first baseline results on the data.

2018

bib
Football and Beer - a Social Media Analysis on Twitter in Context of the FIFA Football World Cup 2018
Roland Roller | Philippe Thomas | Sven Schmeier
Proceedings of the 2018 EMNLP Workshop SMM4H: The 3rd Social Media Mining for Health Applications Workshop & Shared Task

In many societies alcohol is a legal and common recreational substance and socially accepted. Alcohol consumption often comes along with social events as it helps people to increase their sociability and to overcome their inhibitions. On the other hand we know that increased alcohol consumption can lead to serious health issues, such as cancer, cardiovascular diseases and diseases of the digestive system, to mention a few. This work examines alcohol consumption during the FIFA Football World Cup 2018, particularly the usage of alcohol related information on Twitter. For this we analyse the tweeting behaviour and show that the tournament strongly increases the interest in beer. Furthermore we show that countries who had to leave the tournament at early stage might have done something good to their fans as the interest in beer decreased again.

2017

pdf bib
Streaming Text Analytics for Real-Time Event Recognition
Philippe Thomas | Johannes Kirschnick | Leonhard Hennig | Renlong Ai | Sven Schmeier | Holmer Hemsen | Feiyu Xu | Hans Uszkoreit
Proceedings of the International Conference Recent Advances in Natural Language Processing, RANLP 2017

A huge body of continuously growing written knowledge is available on the web in the form of social media posts, RSS feeds, and news articles. Real-time information extraction from such high velocity, high volume text streams requires scalable, distributed natural language processing pipelines. We introduce such a system for fine-grained event recognition within the big data framework Flink, and demonstrate its capabilities for extracting and geo-locating mobility- and industry-related events from heterogeneous text sources. Performance analyses conducted on several large datasets show that our system achieves high throughput and maintains low latency, which is crucial when events need to be detected and acted upon in real-time. We also present promising experimental results for the event extraction component of our system, which recognizes a novel set of event types. The demo system is available at http://dfki.de/sd4m-sta-demo/.

pdf bib
Common Round: Application of Language Technologies to Large-Scale Web Debates
Hans Uszkoreit | Aleksandra Gabryszak | Leonhard Hennig | Jörg Steffen | Renlong Ai | Stephan Busemann | Jon Dehdari | Josef van Genabith | Georg Heigold | Nils Rethmeier | Raphael Rubino | Sven Schmeier | Philippe Thomas | He Wang | Feiyu Xu
Proceedings of the Software Demonstrations of the 15th Conference of the European Chapter of the Association for Computational Linguistics

Web debates play an important role in enabling broad participation of constituencies in social, political and economic decision-taking. However, it is challenging to organize, structure, and navigate a vast number of diverse argumentations and comments collected from many participants over a long time period. In this paper we demonstrate Common Round, a next generation platform for large-scale web debates, which provides functions for eliciting the semantic content and structures from the contributions of participants. In particular, Common Round applies language technologies for the extraction of semantic essence from textual input, aggregation of the formulated opinions and arguments. The platform also provides a cross-lingual access to debates using machine translation.

2016

pdf bib
Real-Time Discovery and Geospatial Visualization of Mobility and Industry Events from Large-Scale, Heterogeneous Data Streams
Leonhard Hennig | Philippe Thomas | Renlong Ai | Johannes Kirschnick | He Wang | Jakob Pannier | Nora Zimmermann | Sven Schmeier | Feiyu Xu | Jan Ostwald | Hans Uszkoreit
Proceedings of ACL-2016 System Demonstrations

2013

pdf bib
A CCG-based Quality Estimation Metric for Statistical Machine Translation Learning from Human Judgments of Machine Translation Output
Maja Popovic | Eleftherios Avramidis | Aljoscha Burchardt | Sabine Hunsicker | Sven Schmeier | Cindy Tscherwinka | David Vilar
Proceedings of Machine Translation Summit XIV: Posters

pdf bib
Learning from Human Judgments of Machine Translation Output
Maja Popovic | Eleftherios Avramidis | Aljoscha Burchardt | Sabine Hunsicker | Sven Schmeier | Cindy Tscherwinka | David Vilar
Proceedings of Machine Translation Summit XIV: Posters

2011

pdf bib
A Mobile Touchable Application for Online Topic Graph Extraction and Exploration of Web Content
Günter Neumann | Sven Schmeier
Proceedings of the ACL-HLT 2011 System Demonstrations

2002

pdf bib
A Domain Adaptive Approach to Automatic Acquisition of Domain Relevant Terms and their Relations with Bootstrapping
Feiyu Xu | Daniela Kurz | Jakub Piskorski | Sven Schmeier
Proceedings of the Third International Conference on Language Resources and Evaluation (LREC’02)

2000

pdf bib
Message Classification in the Call Center
Stephan Busemann | Sven Schmeier | Roman G. Arens
Sixth Applied Natural Language Processing Conference

1997

pdf bib
Natural Language Dialogue Service for Appointment Scheduling Agents
Stephan Busemann | Thierry Declerck | Abdel Kader Diagne | Luca Dini | Judith Klein | Sven Schmeier
Fifth Conference on Applied Natural Language Processing