Swabha Swayamdipta


pdf bib
Challenges in Automated Debiasing for Toxic Language Detection
Xuhui Zhou | Maarten Sap | Swabha Swayamdipta | Yejin Choi | Noah Smith
Proceedings of the 16th Conference of the European Chapter of the Association for Computational Linguistics: Main Volume

Biased associations have been a challenge in the development of classifiers for detecting toxic language, hindering both fairness and accuracy. As potential solutions, we investigate recently introduced debiasing methods for text classification datasets and models, as applied to toxic language detection. Our focus is on lexical (e.g., swear words, slurs, identity mentions) and dialectal markers (specifically African American English). Our comprehensive experiments establish that existing methods are limited in their ability to prevent biased behavior in current toxicity detectors. We then propose an automatic, dialect-aware data correction method, as a proof-of-concept. Despite the use of synthetic labels, this method reduces dialectal associations with toxicity. Overall, our findings show that debiasing a model trained on biased toxic language data is not as effective as simply relabeling the data to remove existing biases.

pdf bib
Sister Help: Data Augmentation for Frame-Semantic Role Labeling
Ayush Pancholy | Miriam R L Petruck | Swabha Swayamdipta
Proceedings of The Joint 15th Linguistic Annotation Workshop (LAW) and 3rd Designing Meaning Representations (DMR) Workshop

While FrameNet is widely regarded as a rich resource of semantics in natural language processing, a major criticism concerns its lack of coverage and the relative paucity of its labeled data compared to other commonly used lexical resources such as PropBank and VerbNet. This paper reports on a pilot study to address these gaps. We propose a data augmentation approach, which uses existing frame-specific annotation to automatically annotate other lexical units of the same frame which are unannotated. Our rule-based approach defines the notion of a **sister lexical unit** and generates frame-specific augmented data for training. We present experiments on frame-semantic role labeling which demonstrate the importance of this data augmentation: we obtain a large improvement to prior results on frame identification and argument identification for FrameNet, utilizing both full-text and lexicographic annotations under FrameNet. Our findings on data augmentation highlight the value of automatic resource creation for improved models in frame-semantic parsing.

pdf bib
Contrastive Explanations for Model Interpretability
Alon Jacovi | Swabha Swayamdipta | Shauli Ravfogel | Yanai Elazar | Yejin Choi | Yoav Goldberg
Proceedings of the 2021 Conference on Empirical Methods in Natural Language Processing

Contrastive explanations clarify why an event occurred in contrast to another. They are inherently intuitive to humans to both produce and comprehend. We propose a method to produce contrastive explanations in the latent space, via a projection of the input representation, such that only the features that differentiate two potential decisions are captured. Our modification allows model behavior to consider only contrastive reasoning, and uncover which aspects of the input are useful for and against particular decisions. Our contrastive explanations can additionally answer for which label, and against which alternative label, is a given input feature useful. We produce contrastive explanations via both high-level abstract concept attribution and low-level input token/span attribution for two NLP classification benchmarks. Our findings demonstrate the ability of label-contrastive explanations to provide fine-grained interpretability of model decisions.

pdf bib
DExperts: Decoding-Time Controlled Text Generation with Experts and Anti-Experts
Alisa Liu | Maarten Sap | Ximing Lu | Swabha Swayamdipta | Chandra Bhagavatula | Noah A. Smith | Yejin Choi
Proceedings of the 59th Annual Meeting of the Association for Computational Linguistics and the 11th International Joint Conference on Natural Language Processing (Volume 1: Long Papers)

Despite recent advances in natural language generation, it remains challenging to control attributes of generated text. We propose DExperts: Decoding-time Experts, a decoding-time method for controlled text generation that combines a pretrained language model with “expert” LMs and/or “anti-expert” LMs in a product of experts. Intuitively, under the ensemble, tokens only get high probability if they are considered likely by the experts, and unlikely by the anti-experts. We apply DExperts to language detoxification and sentiment-controlled generation, where we outperform existing controllable generation methods on both automatic and human evaluations. Moreover, because DExperts operates only on the output of the pretrained LM, it is effective with (anti-)experts of smaller size, including when operating on GPT-3. Our work highlights the promise of tuning small LMs on text with (un)desirable attributes for efficient decoding-time steering.


pdf bib
Dataset Cartography: Mapping and Diagnosing Datasets with Training Dynamics
Swabha Swayamdipta | Roy Schwartz | Nicholas Lourie | Yizhong Wang | Hannaneh Hajishirzi | Noah A. Smith | Yejin Choi
Proceedings of the 2020 Conference on Empirical Methods in Natural Language Processing (EMNLP)

Large datasets have become commonplace in NLP research. However, the increased emphasis on data quantity has made it challenging to assess the quality of data. We introduce Data Maps—a model-based tool to characterize and diagnose datasets. We leverage a largely ignored source of information: the behavior of the model on individual instances during training (training dynamics) for building data maps. This yields two intuitive measures for each example—the model’s confidence in the true class, and the variability of this confidence across epochs—obtained in a single run of training. Experiments on four datasets show that these model-dependent measures reveal three distinct regions in the data map, each with pronounced characteristics. First, our data maps show the presence of “ambiguous” regions with respect to the model, which contribute the most towards out-of-distribution generalization. Second, the most populous regions in the data are “easy to learn” for the model, and play an important role in model optimization. Finally, data maps uncover a region with instances that the model finds “hard to learn”; these often correspond to labeling errors. Our results indicate that a shift in focus from quantity to quality of data could lead to robust models and improved out-of-distribution generalization.

pdf bib
Generative Data Augmentation for Commonsense Reasoning
Yiben Yang | Chaitanya Malaviya | Jared Fernandez | Swabha Swayamdipta | Ronan Le Bras | Ji-Ping Wang | Chandra Bhagavatula | Yejin Choi | Doug Downey
Findings of the Association for Computational Linguistics: EMNLP 2020

Recent advances in commonsense reasoning depend on large-scale human-annotated training sets to achieve peak performance. However, manual curation of training sets is expensive and has been shown to introduce annotation artifacts that neural models can readily exploit and overfit to. We propose a novel generative data augmentation technique, G-DAUGˆC, that aims to achieve more accurate and robust learning in a low-resource setting. Our approach generates synthetic examples using pretrained language models and selects the most informative and diverse set of examples for data augmentation. On experiments with multiple commonsense reasoning benchmarks, G-DAUGˆC consistently outperforms existing data augmentation methods based on back-translation, establishing a new state-of-the-art on WinoGrande, CODAH, and CommonsenseQA, as well as enhances out-of-distribution generalization, proving to be robust against adversaries or perturbations. Our analysis demonstrates that G-DAUGˆC produces a diverse set of fluent training examples, and that its selection and training approaches are important for performance.

pdf bib
The Right Tool for the Job: Matching Model and Instance Complexities
Roy Schwartz | Gabriel Stanovsky | Swabha Swayamdipta | Jesse Dodge | Noah A. Smith
Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics

As NLP models become larger, executing a trained model requires significant computational resources incurring monetary and environmental costs. To better respect a given inference budget, we propose a modification to contextual representation fine-tuning which, during inference, allows for an early (and fast) “exit” from neural network calculations for simple instances, and late (and accurate) exit for hard instances. To achieve this, we add classifiers to different layers of BERT and use their calibrated confidence scores to make early exit decisions. We test our proposed modification on five different datasets in two tasks: three text classification datasets and two natural language inference benchmarks. Our method presents a favorable speed/accuracy tradeoff in almost all cases, producing models which are up to five times faster than the state of the art, while preserving their accuracy. Our method also requires almost no additional training resources (in either time or parameters) compared to the baseline BERT model. Finally, our method alleviates the need for costly retraining of multiple models at different levels of efficiency; we allow users to control the inference speed/accuracy tradeoff using a single trained model, by setting a single variable at inference time. We publicly release our code.

pdf bib
Don’t Stop Pretraining: Adapt Language Models to Domains and Tasks
Suchin Gururangan | Ana Marasović | Swabha Swayamdipta | Kyle Lo | Iz Beltagy | Doug Downey | Noah A. Smith
Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics

Language models pretrained on text from a wide variety of sources form the foundation of today’s NLP. In light of the success of these broad-coverage models, we investigate whether it is still helpful to tailor a pretrained model to the domain of a target task. We present a study across four domains (biomedical and computer science publications, news, and reviews) and eight classification tasks, showing that a second phase of pretraining in-domain (domain-adaptive pretraining) leads to performance gains, under both high- and low-resource settings. Moreover, adapting to the task’s unlabeled data (task-adaptive pretraining) improves performance even after domain-adaptive pretraining. Finally, we show that adapting to a task corpus augmented using simple data selection strategies is an effective alternative, especially when resources for domain-adaptive pretraining might be unavailable. Overall, we consistently find that multi-phase adaptive pretraining offers large gains in task performance.


pdf bib
Proceedings of the 2nd Workshop on Deep Learning Approaches for Low-Resource NLP (DeepLo 2019)
Colin Cherry | Greg Durrett | George Foster | Reza Haffari | Shahram Khadivi | Nanyun Peng | Xiang Ren | Swabha Swayamdipta
Proceedings of the 2nd Workshop on Deep Learning Approaches for Low-Resource NLP (DeepLo 2019)

pdf bib
Transfer Learning in Natural Language Processing
Sebastian Ruder | Matthew E. Peters | Swabha Swayamdipta | Thomas Wolf
Proceedings of the 2019 Conference of the North American Chapter of the Association for Computational Linguistics: Tutorials

The classic supervised machine learning paradigm is based on learning in isolation, a single predictive model for a task using a single dataset. This approach requires a large number of training examples and performs best for well-defined and narrow tasks. Transfer learning refers to a set of methods that extend this approach by leveraging data from additional domains or tasks to train a model with better generalization properties. Over the last two years, the field of Natural Language Processing (NLP) has witnessed the emergence of several transfer learning methods and architectures which significantly improved upon the state-of-the-art on a wide range of NLP tasks. These improvements together with the wide availability and ease of integration of these methods are reminiscent of the factors that led to the success of pretrained word embeddings and ImageNet pretraining in computer vision, and indicate that these methods will likely become a common tool in the NLP landscape as well as an important research direction. We will present an overview of modern transfer learning methods in NLP, how models are pre-trained, what information the representations they learn capture, and review examples and case studies on how these models can be integrated and adapted in downstream NLP tasks.


pdf bib
Syntactic Scaffolds for Semantic Structures
Swabha Swayamdipta | Sam Thomson | Kenton Lee | Luke Zettlemoyer | Chris Dyer | Noah A. Smith
Proceedings of the 2018 Conference on Empirical Methods in Natural Language Processing

We introduce the syntactic scaffold, an approach to incorporating syntactic information into semantic tasks. Syntactic scaffolds avoid expensive syntactic processing at runtime, only making use of a treebank during training, through a multitask objective. We improve over strong baselines on PropBank semantics, frame semantics, and coreference resolution, achieving competitive performance on all three tasks.

pdf bib
Polyglot Semantic Role Labeling
Phoebe Mulcaire | Swabha Swayamdipta | Noah A. Smith
Proceedings of the 56th Annual Meeting of the Association for Computational Linguistics (Volume 2: Short Papers)

Previous approaches to multilingual semantic dependency parsing treat languages independently, without exploiting the similarities between semantic structures across languages. We experiment with a new approach where we combine resources from different languages in the CoNLL 2009 shared task to build a single polyglot semantic dependency parser. Notwithstanding the absence of parallel data, and the dissimilarity in annotations between languages, our approach results in improvement in parsing performance on several languages over a monolingual baseline. Analysis of the polyglot models’ performance provides a new understanding of the similarities and differences between languages in the shared task.

pdf bib
Learning Joint Semantic Parsers from Disjoint Data
Hao Peng | Sam Thomson | Swabha Swayamdipta | Noah A. Smith
Proceedings of the 2018 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, Volume 1 (Long Papers)

We present a new approach to learning a semantic parser from multiple datasets, even when the target semantic formalisms are drastically different and the underlying corpora do not overlap. We handle such “disjoint” data by treating annotations for unobserved formalisms as latent structured variables. Building on state-of-the-art baselines, we show improvements both in frame-semantic parsing and semantic dependency parsing by modeling them jointly.

pdf bib
Annotation Artifacts in Natural Language Inference Data
Suchin Gururangan | Swabha Swayamdipta | Omer Levy | Roy Schwartz | Samuel Bowman | Noah A. Smith
Proceedings of the 2018 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, Volume 2 (Short Papers)

Large-scale datasets for natural language inference are created by presenting crowd workers with a sentence (premise), and asking them to generate three new sentences (hypotheses) that it entails, contradicts, or is logically neutral with respect to. We show that, in a significant portion of such data, this protocol leaves clues that make it possible to identify the label by looking only at the hypothesis, without observing the premise. Specifically, we show that a simple text categorization model can correctly classify the hypothesis alone in about 67% of SNLI (Bowman et. al, 2015) and 53% of MultiNLI (Williams et. al, 2017). Our analysis reveals that specific linguistic phenomena such as negation and vagueness are highly correlated with certain inference classes. Our findings suggest that the success of natural language inference models to date has been overestimated, and that the task remains a hard open problem.

pdf bib
Frame Semantics across Languages: Towards a Multilingual FrameNet
Collin F. Baker | Michael Ellsworth | Miriam R. L. Petruck | Swabha Swayamdipta
Proceedings of the 27th International Conference on Computational Linguistics: Tutorial Abstracts


pdf bib
Greedy, Joint Syntactic-Semantic Parsing with Stack LSTMs
Swabha Swayamdipta | Miguel Ballesteros | Chris Dyer | Noah A. Smith
Proceedings of The 20th SIGNLL Conference on Computational Natural Language Learning


pdf bib
CMU: Arc-Factored, Discriminative Semantic Dependency Parsing
Sam Thomson | Brendan O’Connor | Jeffrey Flanigan | David Bamman | Jesse Dodge | Swabha Swayamdipta | Nathan Schneider | Chris Dyer | Noah A. Smith
Proceedings of the 8th International Workshop on Semantic Evaluation (SemEval 2014)

pdf bib
The CMU Machine Translation Systems at WMT 2014
Austin Matthews | Waleed Ammar | Archna Bhatia | Weston Feely | Greg Hanneman | Eva Schlinger | Swabha Swayamdipta | Yulia Tsvetkov | Alon Lavie | Chris Dyer
Proceedings of the Ninth Workshop on Statistical Machine Translation

pdf bib
A Dependency Parser for Tweets
Lingpeng Kong | Nathan Schneider | Swabha Swayamdipta | Archna Bhatia | Chris Dyer | Noah A. Smith
Proceedings of the 2014 Conference on Empirical Methods in Natural Language Processing (EMNLP)