Swee Kiat Lim


2022

pdf bib
Neural Generation Meets Real People: Building a Social, Informative Open-Domain Dialogue Agent
Ethan A. Chi | Ashwin Paranjape | Abigail See | Caleb Chiam | Trenton Chang | Kathleen Kenealy | Swee Kiat Lim | Amelia Hardy | Chetanya Rastogi | Haojun Li | Alexander Iyabor | Yutong He | Hari Sowrirajan | Peng Qi | Kaushik Ram Sadagopan | Nguyet Minh Phu | Dilara Soylu | Jillian Tang | Avanika Narayan | Giovanni Campagna | Christopher Manning
Proceedings of the 23rd Annual Meeting of the Special Interest Group on Discourse and Dialogue

We present Chirpy Cardinal, an open-domain social chatbot. Aiming to be both informative and conversational, our bot chats with users in an authentic, emotionally intelligent way. By integrating controlled neural generation with scaffolded, hand-written dialogue, we let both the user and bot take turns driving the conversation, producing an engaging and socially fluent experience. Deployed in the fourth iteration of the Alexa Prize Socialbot Grand Challenge, Chirpy Cardinal handled thousands of conversations per day, placing second out of nine bots with an average user rating of 3.58/5.

2017

pdf bib
MalwareTextDB: A Database for Annotated Malware Articles
Swee Kiat Lim | Aldrian Obaja Muis | Wei Lu | Chen Hui Ong
Proceedings of the 55th Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers)

Cybersecurity risks and malware threats are becoming increasingly dangerous and common. Despite the severity of the problem, there has been few NLP efforts focused on tackling cybersecurity. In this paper, we discuss the construction of a new database for annotated malware texts. An annotation framework is introduced based on the MAEC vocabulary for defining malware characteristics, along with a database consisting of 39 annotated APT reports with a total of 6,819 sentences. We also use the database to construct models that can potentially help cybersecurity researchers in their data collection and analytics efforts.