Szu-Min Chen
2017
NLPSA at IJCNLP-2017 Task 2: Imagine Scenario: Leveraging Supportive Images for Dimensional Sentiment Analysis
Szu-Min Chen
|
Zi-Yuan Chen
|
Lun-Wei Ku
Proceedings of the IJCNLP 2017, Shared Tasks
Categorical sentiment classification has drawn much attention in the field of NLP, while less work has been conducted for dimensional sentiment analysis (DSA). Recent works for DSA utilize either word embedding, knowledge base features, or bilingual language resources. In this paper, we propose our model for IJCNLP 2017 Dimensional Sentiment Analysis for Chinese Phrases shared task. Our model incorporates word embedding as well as image features, attempting to simulate human’s imaging behavior toward sentiment analysis. Though the performance is not comparable to others in the end, we conduct several experiments with possible reasons discussed, and analyze the drawbacks of our model.