Sangoh Lee
2025
SAFE: Schema-Driven Approximate Distance Join for Efficient Knowledge Graph Querying
Sangoh Lee
|
Sungho Park
|
Wook-Shin Han
Proceedings of the 2025 Conference on Empirical Methods in Natural Language Processing
To reduce hallucinations in large language models (LLMs), researchers are increasingly investigating reasoning methods that integrate LLMs with external knowledge graphs (KGs). Existing approaches either map an LLM-generated query graph onto the KG or let the LLM traverse the entire graph; the former is fragile because noisy query graphs derail retrieval, whereas the latter is inefficient due to entity-level reasoning over large graphs. In order to tackle these problems, we propose **SAFE** (**S**chema-Driven **A**pproximate Distance Join **F**or **E**fficient Knowledge Graph Querying), a framework that leverages schema graphs for robust query graph generation and efficient KG retrieval. SAFE introduces two key ideas: (1) an Approximate Distance Join (ADJ) algorithm that refines LLM-generated pseudo query graphs by flexibly aligning them with the KG’s structure; and (2) exploiting a compact schema graph to perform ADJ efficiently, reducing overhead and improving retrieval accuracy. Extensive experiments on WebQSP, CWQ and GrailQA demonstrate that SAFE outperforms state-of-the-art methods in both accuracy and efficiency, providing a robust and scalable solution to overcome the inherent limitations of LLM-based knowledge retrieval.