Sidney K. D’Mello

Also published as: Sidney K. DMello


2025

pdf bib
ScanEZ: Integrating Cognitive Models with Self-Supervised Learning for Spatiotemporal Scanpath Prediction
Ekta Sood | Prajit Dhar | Enrica Troiano | Rosy Southwell | Sidney K. D’Mello
Proceedings of the 63rd Annual Meeting of the Association for Computational Linguistics (Volume 2: Short Papers)

Accurately predicting human scanpaths during reading is vital for diverse fields and downstream tasks, from educational technologies to automatic question answering. To date, however, progress in this direction remains limited by scarce gaze data. We overcome the issue with ScanEZ, a self-supervised framework grounded in cognitive models of reading. ScanEZ jointly models the spatial and temporal dimensions of scanpaths by leveraging synthetic data and a 3-D gaze objective inspired by masked language modeling. With this framework, we provide evidence that two key factors in scanpath prediction during reading are: the use of masked modeling of both spatial and temporal patterns of eye movements, and cognitive model simulations as an inductive bias to kick-start training. Our approach achieves state-of-the-art results on established datasets (e.g., up to 31.4% negative log-likelihood improvement on CELER L1), and proves portable across different experimental conditions.

pdf bib
Linguistic Alignment Predicts Learning in Small Group Tutoring Sessions
Dorothea French | Robert Moulder | Kelechi Ezema | Katharina von der Wense | Sidney K. DMello
Findings of the Association for Computational Linguistics: EMNLP 2025

Cognitive science offers rich theories of learning and communication, yet these are often difficult to operationalize at scale. We demonstrate how natural language processing can bridge this gap by applying psycholinguistic theories of discourse to real-world educational data. We investigate linguistic alignment – the convergence of conversational partners’ word choice, grammar, and meaning – in a longitudinal dataset of real-world tutoring interactions and associated student test scores. We examine (1) the extent of alignment, (2) role-based patterns among tutors and students, and (3) the relationship between alignment and learning outcomes. We find that both tutors and students exhibit lexical, syntactic, and semantic alignment, with tutors aligning more strongly to students. Crucially, tutor lexical alignment predicts student learning gains, while student lexical alignment negatively predicts them. As a lightweight, interpretable metric, linguistic alignment offers practical applications in intelligent tutoring systems, educator dashboards, and tutor training.

2016

pdf bib
Identifying Teacher Questions Using Automatic Speech Recognition in Classrooms
Nathaniel Blanchard | Patrick Donnelly | Andrew M. Olney | Borhan Samei | Brooke Ward | Xiaoyi Sun | Sean Kelly | Martin Nystrand | Sidney K. D’Mello
Proceedings of the 17th Annual Meeting of the Special Interest Group on Discourse and Dialogue