T. Mark Ellison

Also published as: T. M. Ellison


2024

pdf bib
Experimental versus In-Corpus Variation in Referring Expression Choice
T. Mark Ellison | Fahime Same
Proceedings of the 2024 Joint International Conference on Computational Linguistics, Language Resources and Evaluation (LREC-COLING 2024)

In this paper, we compare the results of three studies. The first explored feature-conditioned distributions of referring expression (RE) forms in the original corpus from which the contexts were taken. The second is a crowdsourcing study in which we asked participants to express entities within a pre-existing context, given fully specified referents. The third study replicates the crowdsourcing experiment using Large Language Models (LLMs). We evaluate how well the corpus itself can model the variation found when multiple informants (either human participants or LLMs) choose REs in the same contexts. We measure the similarity of the conditional distributions of form categories using the Jensen-Shannon Divergence metric and Description Length metric. We find that the experimental methodology introduces substantial noise, but by taking this noise into account, we can model the variation captured from the corpus and RE form choices made during experiments. Furthermore, we compared the three conditional distributions over the corpus, the human experimental results, and the GPT models. Against our expectations, the divergence is greatest between the corpus and the GPT model.

2022

pdf bib
Constructing Distributions of Variation in Referring Expression Type from Corpora for Model Evaluation
T. Mark Ellison | Fahime Same
Proceedings of the Thirteenth Language Resources and Evaluation Conference

The generation of referring expressions (REs) is a non-deterministic task. However, the algorithms for the generation of REs are standardly evaluated against corpora of written texts which include only one RE per each reference. Our goal in this work is firstly to reproduce one of the few studies taking the distributional nature of the RE generation into account. We add to this work, by introducing a method for exploring variation in human RE choice on the basis of longitudinal corpora - substantial corpora with a single human judgement (in the process of composition) per RE. We focus on the prediction of RE types, proper name, description and pronoun. We compare evaluations made against distributions over these types with evaluations made against parallel human judgements. Our results show agreement in the evaluation of learning algorithms against distributions constructed from parallel human evaluations and from longitudinal data.

2012

pdf bib
Distinguishing Contact-Induced Change from Language Drift in Genetically Related Languages
T. Mark Ellison | Luisa Miceli
Proceedings of the Workshop on Computational Models of Language Acquisition and Loss

2007

pdf bib
Proceedings of Ninth Meeting of the ACL Special Interest Group in Computational Morphology and Phonology
John Nerbonne | T. Mark Ellison | Grzegorz Kondrak
Proceedings of Ninth Meeting of the ACL Special Interest Group in Computational Morphology and Phonology

pdf bib
Computing and Historical Phonology
John Nerbonne | T. Mark Ellison | Grzegorz Kondrak
Proceedings of Ninth Meeting of the ACL Special Interest Group in Computational Morphology and Phonology

pdf bib
Bayesian Identification of Cognates and Correspondences
T. Mark Ellison
Proceedings of Ninth Meeting of the ACL Special Interest Group in Computational Morphology and Phonology

2006

pdf bib
Measuring Language Divergence by Intra-Lexical Comparison
T. Mark Ellison | Simon Kirby
Proceedings of the 21st International Conference on Computational Linguistics and 44th Annual Meeting of the Association for Computational Linguistics

1994

pdf bib
Constraints, Exceptions and Representations
T. Mark Ellison
Computational Phonology

pdf bib
One-Level Phonology: Autosegmental Representations and Rules as Finite Automata
Steven Bird | T. Mark Ellison
Computational Linguistics, Volume 20, Number 1, March 1994

pdf bib
Phonological Derivation in Optimality Theory
T. Mark Ellison
COLING 1994 Volume 2: The 15th International Conference on Computational Linguistics

1992

pdf bib
Restriction and Termination in Parsing with Feature-Theoretic Grammars
S. P. Harrison | T. M. Ellison
Computational Linguistics, Volume 18, Number 4, December 1992