Taha Aksu


2024

pdf bib
Granular Change Accuracy: A More Accurate Performance Metric for Dialogue State Tracking
Taha Aksu | Nancy Chen
Proceedings of the 2024 Joint International Conference on Computational Linguistics, Language Resources and Evaluation (LREC-COLING 2024)

Current metrics for evaluating Dialogue State Tracking (DST) systems exhibit three primary limitations. They: i) erroneously presume a uniform distribution of slots throughout the dialog, ii) neglect to assign partial scores for individual turns, iii) frequently overestimate or underestimate performance by repeatedly counting the models’ successful or failed predictions. To address these shortcomings, we introduce a novel metric: Granular Change Accuracy (GCA). GCA focuses on evaluating the predicted changes in dialogue state over the entire dialogue history. Benchmarking reveals that GCA effectively reduces biases arising from distribution uniformity and the positioning of errors across turns, resulting in a more precise evaluation. Notably, we find that these biases are particularly pronounced when evaluating few-shot or zero-shot trained models, becoming even more evident as the model’s error rate increases. Hence, GCA offers significant promise, particularly for assessing models trained with limited resources. Our GCA implementation is a useful addition to the pool of DST metrics.

2023

pdf bib
CESAR: Automatic Induction of Compositional Instructions for Multi-turn Dialogs
Taha Aksu | Devamanyu Hazarika | Shikib Mehri | Seokhwan Kim | Dilek Hakkani-Tur | Yang Liu | Mahdi Namazifar
Proceedings of the 2023 Conference on Empirical Methods in Natural Language Processing

Instruction-based multitasking has played a critical role in the success of large language models (LLMs) in multi-turn dialog applications. While publicly available LLMs have shown promising performance, when exposed to complex instructions with multiple constraints, they lag against state-of-the-art models like ChatGPT. In this work, we hypothesize that the availability of large-scale complex demonstrations is crucial in bridging this gap. Focusing on dialog applications, we propose a novel framework, CESAR, that unifies a large number of dialog tasks in the same format and allows programmatic induction of complex instructions without any manual effort. We apply CESAR on InstructDial, a benchmark for instruction-based dialog tasks. We further enhance InstructDial with new datasets and tasks and utilize CESAR to induce complex tasks with compositional instructions. This results in a new benchmark called InstructDial++, which includes 63 datasets with 86 basic tasks and 68 composite tasks. Through rigorous experiments, we demonstrate the scalability of CESAR in providing rich instructions. Models trained on InstructDial++ can follow compositional prompts, such as prompts that ask for multiple stylistic constraints.

2022

pdf bib
N-Shot Learning for Augmenting Task-Oriented Dialogue State Tracking
Taha Aksu | Zhengyuan Liu | Min-Yen Kan | Nancy Chen
Findings of the Association for Computational Linguistics: ACL 2022

Augmentation of task-oriented dialogues has followed standard methods used for plain-text such as back-translation, word-level manipulation, and paraphrasing despite its richly annotated structure. In this work, we introduce an augmentation framework that utilizes belief state annotations to match turns from various dialogues and form new synthetic dialogues in a bottom-up manner. Unlike other augmentation strategies, it operates with as few as five examples. Our augmentation strategy yields significant improvements when both adapting a DST model to a new domain, and when adapting a language model to the DST task, on evaluations with TRADE and TOD-BERT models. Further analysis shows that our model performs better on seen values during training, and it is also more robust to unseen values. We conclude that exploiting belief state annotations enhances dialogue augmentation and results in improved models in n-shot training scenarios.