Takashi Wada


pdf bib
Unsupervised Paraphrasing of Multiword Expressions
Takashi Wada | Yuji Matsumoto | Timothy Baldwin | Jey Han Lau
Findings of the Association for Computational Linguistics: ACL 2023

We propose an unsupervised approach to paraphrasing multiword expressions (MWEs) in context. Our model employs only monolingual corpus data and pre-trained language models (without fine-tuning), and does not make use of any external resources such as dictionaries. We evaluate our method on the SemEval 2022 idiomatic semantic text similarity task, and show that it outperforms all unsupervised systems and rivals supervised systems.

pdf bib
Unsupervised Lexical Simplification with Context Augmentation
Takashi Wada | Timothy Baldwin | Jey Lau
Findings of the Association for Computational Linguistics: EMNLP 2023

We propose a new unsupervised lexical simplification method that uses only monolingual data and pre-trained language models. Given a target word and its context, our method generates substitutes based on the target context and also additional contexts sampled from monolingual data. We conduct experiments in English, Portuguese, and Spanish on the TSAR-2022 shared task, and show that our model substantially outperforms other unsupervised systems across all languages. We also establish a new state-of-the-art by ensembling our model with GPT-3.5. Lastly, we evaluate our model on the SWORDS lexical substitution data set, achieving a state-of-the-art result.


pdf bib
Unsupervised Lexical Substitution with Decontextualised Embeddings
Takashi Wada | Timothy Baldwin | Yuji Matsumoto | Jey Han Lau
Proceedings of the 29th International Conference on Computational Linguistics

We propose a new unsupervised method for lexical substitution using pre-trained language models. Compared to previous approaches that use the generative capability of language models to predict substitutes, our method retrieves substitutes based on the similarity of contextualised and decontextualised word embeddings, i.e. the average contextual representation of a word in multiple contexts. We conduct experiments in English and Italian, and show that our method substantially outperforms strong baselines and establishes a new state-of-the-art without any explicit supervision or fine-tuning. We further show that our method performs particularly well at predicting low-frequency substitutes, and also generates a diverse list of substitute candidates, reducing morphophonetic or morphosyntactic biases induced by article-noun agreement.


pdf bib
Learning Contextualised Cross-lingual Word Embeddings and Alignments for Extremely Low-Resource Languages Using Parallel Corpora
Takashi Wada | Tomoharu Iwata | Yuji Matsumoto | Timothy Baldwin | Jey Han Lau
Proceedings of the 1st Workshop on Multilingual Representation Learning

We propose a new approach for learning contextualised cross-lingual word embeddings based on a small parallel corpus (e.g. a few hundred sentence pairs). Our method obtains word embeddings via an LSTM encoder-decoder model that simultaneously translates and reconstructs an input sentence. Through sharing model parameters among different languages, our model jointly trains the word embeddings in a common cross-lingual space. We also propose to combine word and subword embeddings to make use of orthographic similarities across different languages. We base our experiments on real-world data from endangered languages, namely Yongning Na, Shipibo-Konibo, and Griko. Our experiments on bilingual lexicon induction and word alignment tasks show that our model outperforms existing methods by a large margin for most language pairs. These results demonstrate that, contrary to common belief, an encoder-decoder translation model is beneficial for learning cross-lingual representations even in extremely low-resource conditions. Furthermore, our model also works well on high-resource conditions, achieving state-of-the-art performance on a German-English word-alignment task.


pdf bib
Coordination Boundary Identification without Labeled Data for Compound Terms Disambiguation
Yuya Sawada | Takashi Wada | Takayoshi Shibahara | Hiroki Teranishi | Shuhei Kondo | Hiroyuki Shindo | Taro Watanabe | Yuji Matsumoto
Proceedings of the 28th International Conference on Computational Linguistics

We propose a simple method for nominal coordination boundary identification. As the main strength of our method, it can identify the coordination boundaries without training on labeled data, and can be applied even if coordination structure annotations are not available. Our system employs pre-trained word embeddings to measure the similarities of words and detects the span of coordination, assuming that conjuncts share syntactic and semantic similarities. We demonstrate that our method yields good results in identifying coordinated noun phrases in the GENIA corpus and is comparable to a recent supervised method for the case when the coordinator conjoins simple noun phrases.


pdf bib
Unsupervised Multilingual Word Embedding with Limited Resources using Neural Language Models
Takashi Wada | Tomoharu Iwata | Yuji Matsumoto
Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics

Recently, a variety of unsupervised methods have been proposed that map pre-trained word embeddings of different languages into the same space without any parallel data. These methods aim to find a linear transformation based on the assumption that monolingual word embeddings are approximately isomorphic between languages. However, it has been demonstrated that this assumption holds true only on specific conditions, and with limited resources, the performance of these methods decreases drastically. To overcome this problem, we propose a new unsupervised multilingual embedding method that does not rely on such assumption and performs well under resource-poor scenarios, namely when only a small amount of monolingual data (i.e., 50k sentences) are available, or when the domains of monolingual data are different across languages. Our proposed model, which we call ‘Multilingual Neural Language Models’, shares some of the network parameters among multiple languages, and encodes sentences of multiple languages into the same space. The model jointly learns word embeddings of different languages in the same space, and generates multilingual embeddings without any parallel data or pre-training. Our experiments on word alignment tasks have demonstrated that, on the low-resource condition, our model substantially outperforms existing unsupervised and even supervised methods trained with 500 bilingual pairs of words. Our model also outperforms unsupervised methods given different-domain corpora across languages. Our code is publicly available.