Tamir Sheafer
2024
Reap the Wild Wind: Detecting Media Storms in Large-Scale News Corpora
Dror Kris Markus
|
Effi Levi
|
Tamir Sheafer
|
Shaul Rafael Shenhav
Findings of the Association for Computational Linguistics: EMNLP 2024
Media storms, dramatic outbursts of attention to a story, are central components of media dynamics and the attention landscape. Despite their importance, there has been little systematic and empirical research on this concept due to issues of measurement and operationalization. We introduce an iterative human-in-the-loop method to identify media storms in a large-scale corpus of news articles. The text is first transformed into signals of dispersion based on several textual characteristics. In each iteration, we apply unsupervised anomaly detection to these signals; each anomaly is then validated by an expert to confirm the presence of a storm, and those results are then used to tune the anomaly detection in the next iteration. We make available the resulting media storm dataset. Both the method and dataset provide a basis for comprehensive empirical study of media storms.
IsraParlTweet: The Israeli Parliamentary and Twitter Resource
Guy Mor-Lan
|
Effi Levi
|
Tamir Sheafer
|
Shaul R. Shenhav
Proceedings of the 2024 Joint International Conference on Computational Linguistics, Language Resources and Evaluation (LREC-COLING 2024)
We introduce IsraParlTweet, a new linked corpus of Hebrew-language parliamentary discussions from the Knesset (Israeli Parliament) between the years 1992-2023 and Twitter posts made by Members of the Knesset between the years 2008-2023, containing a total of 294.5 million Hebrew tokens. In addition to raw text, the corpus contains comprehensive metadata on speakers and Knesset sessions as well as several linguistic annotations. As a result, IsraParlTweet can be used to conduct a wide variety of quantitative and qualitative analyses and provide valuable insights into political discourse in Israel.
2022
Detecting Narrative Elements in Informational Text
Effi Levi
|
Guy Mor
|
Tamir Sheafer
|
Shaul Shenhav
Findings of the Association for Computational Linguistics: NAACL 2022
Automatic extraction of narrative elements from text, combining narrative theories with computational models, has been receiving increasing attention over the last few years. Previous works have utilized the oral narrative theory by Labov and Waletzky to identify various narrative elements in personal stories texts. Instead, we direct our focus to informational texts, specifically news stories. We introduce NEAT (Narrative Elements AnnoTation) – a novel NLP task for detecting narrative elements in raw text. For this purpose, we designed a new multi-label narrative annotation scheme, better suited for informational text (e.g. news media), by adapting elements from the narrative theory of Labov and Waletzky (Complication and Resolution) and adding a new narrative element of our own (Success). We then used this scheme to annotate a new dataset of 2,209 sentences, compiled from 46 news articles from various category domains. We trained a number of supervised models in several different setups over the annotated dataset to identify the different narrative elements, achieving an average F1 score of up to 0.77. The results demonstrate the holistic nature of our annotation scheme as well as its robustness to domain category.
Search
Co-authors
- Effi Levi 3
- Dror Kris Markus 1
- Shaul Rafael Shenhav 1
- Guy Mor 1
- Shaul Shenhav 1
- show all...