Tanise Ceron


2024

pdf bib
Beyond Prompt Brittleness: Evaluating the Reliability and Consistency of Political Worldviews in LLMs
Tanise Ceron | Neele Falk | Ana Barić | Dmitry Nikolaev | Sebastian Padó
Transactions of the Association for Computational Linguistics, Volume 12

Due to the widespread use of large language models (LLMs), we need to understand whether they embed a specific “worldview” and what these views reflect. Recent studies report that, prompted with political questionnaires, LLMs show left-liberal leanings (Feng et al., 2023; Motoki et al., 2024). However, it is as yet unclear whether these leanings are reliable (robust to prompt variations) and whether the leaning is consistent across policies and political leaning. We propose a series of tests which assess the reliability and consistency of LLMs’ stances on political statements based on a dataset of voting-advice questionnaires collected from seven EU countries and annotated for policy issues. We study LLMs ranging in size from 7B to 70B parameters and find that their reliability increases with parameter count. Larger models show overall stronger alignment with left-leaning parties but differ among policy programs: They show a (left-wing) positive stance towards environment protection, social welfare state, and liberal society but also (right-wing) law and order, with no consistent preferences in the areas of foreign policy and migration.

pdf bib
Toeing the Party Line: Election Manifestos as a Key to Understand Political Discourse on Twitter
Maximilian Maurer | Tanise Ceron | Sebastian Padó | Gabriella Lapesa
Findings of the Association for Computational Linguistics: EMNLP 2024

Political discourse on Twitter is a moving target: politicians continuously make statements about their positions. It is therefore crucial to track their discourse on social media to understand their ideological positions and goals. However, Twitter data is also challenging to work with since it is ambiguous and often dependent on social context, and consequently, recent work on political positioning has tended to focus strongly on manifestos (parties’ electoral programs) rather than social media.In this paper, we extend recently proposed methods to predict pairwise positional similarities between parties from the manifesto case to the Twitter case, using hashtags as a signal to fine-tune text representations, without the need for manual annotation. We verify the efficacy of fine-tuning and conduct a series of experiments that assess the robustness of our method for low-resource scenarios. We find that our method yields stable positionings reflective of manifesto positionings, both in scenarios with all tweets of candidates across years available and when only smaller subsets from shorter time periods are available. This indicates that it is possible to reliably analyze the relative positioning of actors without the need for manual annotation, even in the noisier context of social media.

2023

pdf bib
Additive manifesto decomposition: A policy domain aware method for understanding party positioning
Tanise Ceron | Dmitry Nikolaev | Sebastian Padó
Findings of the Association for Computational Linguistics: ACL 2023

Automatic extraction of party (dis)similarities from texts such as party election manifestos or parliamentary speeches plays an increasing role in computational political science. However, existing approaches are fundamentally limited to targeting only global party (dis)-similarity: they condense the relationship between a pair of parties into a single figure, their similarity. In aggregating over all policy domains (e.g., health or foreign policy), they do not provide any qualitative insights into which domains parties agree or disagree on. This paper proposes a workflow for estimating policy domain aware party similarity that overcomes this limitation. The workflow covers (a) definition of suitable policy domains; (b) automatic labeling of domains, if no manual labels are available; (c) computation of domain-level similarities and aggregation at a global level; (d) extraction of interpretable party positions on major policy axes via multidimensional scaling. We evaluate our workflow on manifestos from the German federal elections. We find that our method (a) yields high correlation when predicting party similarity at a global level and (b) provides accurate party-specific positions, even with automatically labelled policy domains.

pdf bib
Multilingual estimation of political-party positioning: From label aggregation to long-input Transformers
Dmitry Nikolaev | Tanise Ceron | Sebastian Padó
Proceedings of the 2023 Conference on Empirical Methods in Natural Language Processing

Scaling analysis is a technique in computational political science that assigns a political actor (e.g. politician or party) a score on a predefined scale based on a (typically long) body of text (e.g. a parliamentary speech or an election manifesto). For example, political scientists have often used the left–right scale to systematically analyse political landscapes of different countries. NLP methods for automatic scaling analysis can find broad application provided they (i) are able to deal with long texts and (ii) work robustly across domains and languages. In this work, we implement and compare two approaches to automatic scaling analysis of political-party manifestos: label aggregation, a pipeline strategy relying on annotations of individual statements from the manifestos, and long-input-Transformer-based models, which compute scaling values directly from raw text. We carry out the analysis of the Comparative Manifestos Project dataset across 41 countries and 27 languages and find that the task can be efficiently solved by state-of-the-art models, with label aggregation producing the best results.

2022

pdf bib
Optimizing text representations to capture (dis)similarity between political parties
Tanise Ceron | Nico Blokker | Sebastian Padó
Proceedings of the 26th Conference on Computational Natural Language Learning (CoNLL)

Even though fine-tuned neural language models have been pivotal in enabling “deep” automatic text analysis, optimizing text representations for specific applications remains a crucial bottleneck. In this study, we look at this problem in the context of a task from computational social science, namely modeling pairwise similarities between political parties. Our research question is what level of structural information is necessary to create robust text representation, contrasting a strongly informed approach (which uses both claim span and claim category annotations) with approaches that forgo one or both types of annotation with document structure-based heuristics. Evaluating our models on the manifestos of German parties for the 2021 federal election. We find that heuristics that maximize within-party over between-party similarity along with a normalization step lead to reliable party similarity prediction, without the need for manual annotation.

pdf bib
Algorithmic Diversity and Tiny Models: Comparing Binary Networks and the Fruit Fly Algorithm on Document Representation Tasks
Tanise Ceron | Nhut Truong | Aurelie Herbelot
Proceedings of The Third Workshop on Simple and Efficient Natural Language Processing (SustaiNLP)

Neural language models have seen a dramatic increase in size in the last years. While many still advocate that ‘bigger is better’, work in model distillation has shown that the number of parameters used by very large networks is actually more than what is required for state-of-the-art performance. This prompts an obvious question: can we build smaller models from scratch, rather than going through the inefficient process of training at scale and subsequently reducing model size. In this paper, we investigate the behaviour of a biologically inspired algorithm, based on the fruit fly’s olfactory system. This algorithm has shown good performance in the past on the task of learning word embeddings. We now put it to the test on the task of semantic hashing. Specifically, we compare the fruit fly to a standard binary network on the task of generating locality-sensitive hashes for text documents, measuring both task performance and energy consumption. Our results indicate that the two algorithms have complementary strengths while showing similar electricity usage.