Tanu Mitra
2024
“They are uncultured”: Unveiling Covert Harms and Social Threats in LLM Generated Conversations
Preetam Prabhu Srikar Dammu
|
Hayoung Jung
|
Anjali Singh
|
Monojit Choudhury
|
Tanu Mitra
Proceedings of the 2024 Conference on Empirical Methods in Natural Language Processing
Large language models (LLMs) have emerged as an integral part of modern societies, powering user-facing applications such as personal assistants and enterprise applications like recruitment tools. Despite their utility, research indicates that LLMs perpetuate systemic biases. Yet, prior works on LLM harms predominantly focus on Western concepts like race and gender, often overlooking cultural concepts from other parts of the world. Additionally, these studies typically investigate “harm” as a singular dimension, ignoring the various and subtle forms in which harms manifest. To address this gap, we introduce the Covert Harms and Social Threats (CHAST), a set of seven metrics grounded in social science literature. We utilize evaluation models aligned with human assessments to examine the presence of covert harms in LLM-generated conversations, particularly in the context of recruitment. Our experiments reveal that seven out of the eight LLMs included in this study generated conversations riddled with CHAST, characterized by malign views expressed in seemingly neutral language unlikely to be detected by existing methods. Notably, these LLMs manifested more extreme views and opinions when dealing with non-Western concepts like caste, compared to Western ones such as race.
ValueScope: Unveiling Implicit Norms and Values via Return Potential Model of Social Interactions
Chan Young Park
|
Shuyue Stella Li
|
Hayoung Jung
|
Svitlana Volkova
|
Tanu Mitra
|
David Jurgens
|
Yulia Tsvetkov
Findings of the Association for Computational Linguistics: EMNLP 2024
This study introduces ValueScope, a framework leveraging language models to quantify social norms and values within online communities, grounded in social science perspectives on normative structures. We employ ValueScope to dissect and analyze linguistic and stylistic expressions across 13 Reddit communities categorized under gender, politics, science, and finance. Our analysis provides a quantitative foundation confirming that even closely related communities exhibit remarkably diverse norms. This diversity supports existing theories and adds a new dimension to understanding community interactions. ValueScope not only delineates differences in social norms but also effectively tracks their evolution and the influence of significant external events like the U.S. presidential elections and the emergence of new sub-communities. The framework thus highlights the pivotal role of social norms in shaping online interactions, presenting a substantial advance in both the theory and application of social norm studies in digital spaces.