Tanya Goyal


pdf bib
Understanding Factual Errors in Summarization: Errors, Summarizers, Datasets, Error Detectors
Liyan Tang | Tanya Goyal | Alex Fabbri | Philippe Laban | Jiacheng Xu | Semih Yavuz | Wojciech Kryscinski | Justin Rousseau | Greg Durrett
Proceedings of the 61st Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers)

The propensity of abstractive summarization models to make factual errors has been studied extensively, including design of metrics to detect factual errors and annotation of errors in current systems’ outputs. However, the ever-evolving nature of summarization systems, metrics, and annotated benchmarks makes factuality evaluation a moving target, and drawing clear comparisons among metrics has become increasingly difficult. In this work, we aggregate factuality error annotations from nine existing datasets and stratify them according to the underlying summarization model. We compare performance of state-of-the-art factuality metrics, including recent ChatGPT-based metrics, on this stratified benchmark and show that their performance varies significantly across different types of summarization models. Critically, our analysis shows that much of the recent improvement in the factuality detection space has been on summaries from older (pre-Transformer) models instead of more relevant recent summarization models. We further perform a finer-grained analysis per error-type and find similar performance variance across error types for different factuality metrics. Our results show that no one metric is superior in all settings or for all error types, and we provide recommendations for best practices given these insights.

pdf bib
WiCE: Real-World Entailment for Claims in Wikipedia
Ryo Kamoi | Tanya Goyal | Juan Diego Rodriguez | Greg Durrett
Proceedings of the 2023 Conference on Empirical Methods in Natural Language Processing

Textual entailment models are increasingly applied in settings like fact-checking, presupposition verification in question answering, or summary evaluation. However, these represent a significant domain shift from existing entailment datasets, and models underperform as a result. We propose WiCE, a new fine-grained textual entailment dataset built on natural claim and evidence pairs extracted from Wikipedia. In addition to standard claim-level entailment, WiCE provides entailment judgments over sub-sentence units of the claim, and a minimal subset of evidence sentences that support each subclaim. To support this, we propose an automatic claim decomposition strategy using GPT-3.5 which we show is also effective at improving entailment models’ performance on multiple datasets at test time. Finally, we show that real claims in our dataset involve challenging verification and retrieval problems that existing models fail to address.

pdf bib
Shortcomings of Question Answering Based Factuality Frameworks for Error Localization
Ryo Kamoi | Tanya Goyal | Greg Durrett
Proceedings of the 17th Conference of the European Chapter of the Association for Computational Linguistics

Despite recent progress in abstractive summarization, models often generate summaries with factual errors. Numerous approaches to detect these errors have been proposed, the most popular of which are question answering (QA)-based factuality metrics. These have been shown to work well at predicting summary-level factuality and have potential to localize errors within summaries, but this latter capability has not been systematically evaluated in past research. In this paper, we conduct the first such analysis and find that, contrary to our expectations, QA-based frameworks fail to correctly identify error spans in generated summaries and are outperformed by trivial exact match baselines. Our analysis reveals a major reason for such poor localization: questions generated by the QG module often inherit errors from non-factual summaries which are then propagated further into downstream modules. Moreover, even human-in-the-loop question generation cannot easily offset these problems. Our experiments conclusively show that there exist fundamental issues with localization using the QA framework which cannot be fixed solely by stronger QA and QG models.


pdf bib
SNaC: Coherence Error Detection for Narrative Summarization
Tanya Goyal | Junyi Jessy Li | Greg Durrett
Proceedings of the 2022 Conference on Empirical Methods in Natural Language Processing

Progress in summarizing long texts is inhibited by the lack of appropriate evaluation frameworks. A long summary that appropriately covers the facets of that text must also present a coherent narrative, but current automatic and human evaluation methods fail to identify gaps in coherence. In this work, we introduce SNaC, a narrative coherence evaluation framework for fine-grained annotations of long summaries. We develop a taxonomy of coherence errors in generated narrative summaries and collect span-level annotations for 6.6k sentences across 150 book and movie summaries. Our work provides the first characterization of coherence errors generated by state-of-the-art summarization models and a protocol for eliciting coherence judgments from crowdworkers. Furthermore, we show that the collected annotations allow us to benchmark past work in coherence modeling and train a strong classifier for automatically localizing coherence errors in generated summaries. Finally, our SNaC framework can support future work in long document summarization and coherence evaluation, including improved summarization modeling and post-hoc summary correction.

pdf bib
HydraSum: Disentangling Style Features in Text Summarization with Multi-Decoder Models
Tanya Goyal | Nazneen Rajani | Wenhao Liu | Wojciech Kryscinski
Proceedings of the 2022 Conference on Empirical Methods in Natural Language Processing

Summarization systems make numerous “decisions” about summary properties during inference, e.g. degree of copying, specificity and length of outputs, etc. However, these are implicitly encoded within model parameters and specific styles cannot be enforced. To address this, we introduce HydraSum, a new summarization architecture that extends the single decoder framework of current models to a mixture-of-experts version with multiple decoders. We show that HydraSum’s multiple decoders automatically learn contrasting summary styles when trained under the standard training objective without any extra supervision. Through experiments on three summarization datasets (CNN, Newsroom and XSum), we show that HydraSum provides a simple mechanism to obtain stylistically-diverse summaries by sampling from either individual decoders or their mixtures, outperforming baseline models. Finally, we demonstrate that a small modification to the gating strategy during training can enforce an even stricter style partitioning, e.g. high- vs low-abstractiveness or high- vs low-specificity, allowing users to sample from a larger area in the generation space and vary summary styles along multiple dimensions.

pdf bib
FALTE: A Toolkit for Fine-grained Annotation for Long Text Evaluation
Tanya Goyal | Junyi Jessy Li | Greg Durrett
Proceedings of the 2022 Conference on Empirical Methods in Natural Language Processing: System Demonstrations

A growing swath of NLP research is tackling problems related to generating long text, including tasks such as open-ended story generation, summarization, dialogue, and more. However, we currently lack appropriate tools to evaluate these long outputs of generation models: classic automatic metrics such as ROUGE have been shown to perform poorly, and newer learned metrics do not necessarily work wellfor all tasks and domains of text. Human rating and error analysis remains a crucial component for any evaluation of long text generation. In this paper, we introduce FALTE, a web-based annotation toolkit designed to address this shortcoming. Our tool allows researchers to collect fine-grained judgments of text quality from crowdworkers using an error taxonomy specific to the downstream task. Using the taskinterface, annotators can select and assign error labels to text span selections in an incremental paragraph-level annotation workflow. The latter functionality is designed to simplify the document-level task into smaller units and reduce cognitive load on the annotators. Our tool has previously been used to run a large-scale annotation study that evaluates the coherence of long generated summaries, demonstrating its utility.

pdf bib
Training Dynamics for Text Summarization Models
Tanya Goyal | Jiacheng Xu | Junyi Jessy Li | Greg Durrett
Findings of the Association for Computational Linguistics: ACL 2022

Pre-trained language models (e.g. BART) have shown impressive results when fine-tuned on large summarization datasets. However, little is understood about this fine-tuning process, including what knowledge is retained from pre-training time or how content selection and generation strategies are learnt across iterations. In this work, we analyze the training dynamics for generation models, focusing on summarization. Across different datasets (CNN/DM, XSum, MediaSum) and summary properties, such as abstractiveness and hallucination, we study what the model learns at different stages of its fine-tuning process. We find that a propensity to copy the input is learned early in the training process consistently across all datasets studied. On the other hand, factual errors, such as hallucination of unsupported facts, are learnt in the later stages, though this behavior is more varied across domains. Based on these observations, we explore complementary approaches for modifying training: first, disregarding high-loss tokens that are challenging to learn and second, disregarding low-loss tokens that are learnt very quickly in the latter stages of the training process. We show that these simple training modifications allow us to configure our model to achieve different goals, such as improving factuality or improving abstractiveness.


pdf bib
Annotating and Modeling Fine-grained Factuality in Summarization
Tanya Goyal | Greg Durrett
Proceedings of the 2021 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies

Recent pre-trained abstractive summarization systems have started to achieve credible performance, but a major barrier to their use in practice is their propensity to output summaries that are not faithful to the input and that contain factual errors. While a number of annotated datasets and statistical models for assessing factuality have been explored, there is no clear picture of what errors are most important to target or where current techniques are succeeding and failing. We explore both synthetic and human-labeled data sources for training models to identify factual errors in summarization, and study factuality at the word-, dependency-, and sentence-level. Our observations are threefold. First, exhibited factual errors differ significantly across datasets, and commonly-used training sets of simple synthetic errors do not reflect errors made on abstractive datasets like XSum. Second, human-labeled data with fine-grained annotations provides a more effective training signal than sentence-level annotations or synthetic data. Finally, we show that our best factuality detection model enables training of more factual XSum summarization models by allowing us to identify non-factual tokens in the training data.

pdf bib
Contemporary NLP Modeling in Six Comprehensive Programming Assignments
Greg Durrett | Jifan Chen | Shrey Desai | Tanya Goyal | Lucas Kabela | Yasumasa Onoe | Jiacheng Xu
Proceedings of the Fifth Workshop on Teaching NLP

We present a series of programming assignments, adaptable to a range of experience levels from advanced undergraduate to PhD, to teach students design and implementation of modern NLP systems. These assignments build from the ground up and emphasize full-stack understanding of machine learning models: initially, students implement inference and gradient computation by hand, then use PyTorch to build nearly state-of-the-art neural networks using current best practices. Topics are chosen to cover a wide range of modeling and inference techniques that one might encounter, ranging from linear models suitable for industry applications to state-of-the-art deep learning models used in NLP research. The assignments are customizable, with constrained options to guide less experienced students or open-ended options giving advanced students freedom to explore. All of them can be deployed in a fully autogradable fashion, and have collectively been tested on over 300 students across several semesters.


pdf bib
Neural Syntactic Preordering for Controlled Paraphrase Generation
Tanya Goyal | Greg Durrett
Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics

Paraphrasing natural language sentences is a multifaceted process: it might involve replacing individual words or short phrases, local rearrangement of content, or high-level restructuring like topicalization or passivization. Past approaches struggle to cover this space of paraphrase possibilities in an interpretable manner. Our work, inspired by pre-ordering literature in machine translation, uses syntactic transformations to softly “reorder” the source sentence and guide our neural paraphrasing model. First, given an input sentence, we derive a set of feasible syntactic rearrangements using an encoder-decoder model. This model operates over a partially lexical, partially syntactic view of the sentence and can reorder big chunks. Next, we use each proposed rearrangement to produce a sequence of position embeddings, which encourages our final encoder-decoder paraphrase model to attend to the source words in a particular order. Our evaluation, both automatic and human, shows that the proposed system retains the quality of the baseline approaches while giving a substantial increase in the diversity of the generated paraphrases.

pdf bib
Evaluating Factuality in Generation with Dependency-level Entailment
Tanya Goyal | Greg Durrett
Findings of the Association for Computational Linguistics: EMNLP 2020

Despite significant progress in text generation models, a serious limitation is their tendency to produce text that is factually inconsistent with information in the input. Recent work has studied whether textual entailment systems can be used to identify factual errors; however, these sentence-level entailment models are trained to solve a different problem than generation filtering and they do not localize which part of a generation is non-factual. In this paper, we propose a new formulation of entailment that decomposes it at the level of dependency arcs. Rather than focusing on aggregate decisions, we instead ask whether the semantic relationship manifested by individual dependency arcs in the generated output is supported by the input. Human judgments on this task are difficult to obtain; we therefore propose a method to automatically create data based on existing entailment or paraphrase corpora. Experiments show that our dependency arc entailment model trained on this data can identify factual inconsistencies in paraphrasing and summarization better than sentence-level methods or those based on question generation, while additionally localizing the erroneous parts of the generation.


pdf bib
Embedding Time Expressions for Deep Temporal Ordering Models
Tanya Goyal | Greg Durrett
Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics

Data-driven models have demonstrated state-of-the-art performance in inferring the temporal ordering of events in text. However, these models often overlook explicit temporal signals, such as dates and time windows. Rule-based methods can be used to identify the temporal links between these time expressions (timexes), but they fail to capture timexes’ interactions with events and are hard to integrate with the distributed representations of neural net models. In this paper, we introduce a framework to infuse temporal awareness into such models by learning a pre-trained model to embed timexes. We generate synthetic data consisting of pairs of timexes, then train a character LSTM to learn embeddings and classify the timexes’ temporal relation. We evaluate the utility of these embeddings in the context of a strong neural model for event temporal ordering, and show a small increase in performance on the MATRES dataset and more substantial gains on an automatically collected dataset with more frequent event-timex interactions.


pdf bib
Frustrated, Polite, or Formal: Quantifying Feelings and Tone in Email
Niyati Chhaya | Kushal Chawla | Tanya Goyal | Projjal Chanda | Jaya Singh
Proceedings of the Second Workshop on Computational Modeling of People’s Opinions, Personality, and Emotions in Social Media

Email conversations are the primary mode of communication in enterprises. The email content expresses an individual’s needs, requirements and intentions. Affective information in the email text can be used to get an insight into the sender’s mood or emotion. We present a novel approach to model human frustration in text. We identify linguistic features that influence human perception of frustration and model it as a supervised learning task. The paper provides a detailed comparison across traditional regression and word distribution-based models. We report a mean-squared error (MSE) of 0.018 against human-annotated frustration for the best performing model. The approach establishes the importance of affect features in frustration prediction for email data. We further evaluate the efficacy of the proposed feature set and model in predicting other tone or affects in text, namely formality and politeness; results demonstrate a comparable performance against the state-of-the-art baselines.


pdf bib
An Empirical Analysis of Edit Importance between Document Versions
Tanya Goyal | Sachin Kelkar | Manas Agarwal | Jeenu Grover
Proceedings of the 2017 Conference on Empirical Methods in Natural Language Processing

In this paper, we present a novel approach to infer significance of various textual edits to documents. An author may make several edits to a document; each edit varies in its impact to the content of the document. While some edits are surface changes and introduce negligible change, other edits may change the content/tone of the document significantly. In this paper, we perform an analysis on the human perceptions of edit importance while reviewing documents from one version to the next. We identify linguistic features that influence edit importance and model it in a regression based setting. We show that the predicted importance by our approach is highly correlated with the human perceived importance, established by a Mechanical Turk study.