Retrieval augmented generation (RAG) exhibits outstanding performance in promoting the knowledge capabilities of large language models (LLMs) with retrieved documents related to user queries. However, RAG only focuses on improving the response quality of LLMs via enhancing queries indiscriminately with retrieved information, paying little attention to what type of knowledge LLMs really need to answer original queries more accurately. In this paper, we suggest that long-tail knowledge is crucial for RAG as LLMs have already remembered common world knowledge during large-scale pre-training. Based on our observation, we propose a simple but effective long-tail knowledge detection method for LLMs. Specifically, the novel Generative Expected Calibration Error (GECE) metric is derived to measure the “long-tailness” of knowledge based on both statistics and semantics. Hence, we retrieve relevant documents and infuse them into the model for patching knowledge loopholes only when the input query relates to long-tail knowledge. Experiments show that, compared to existing RAG pipelines, our method achieves over 4x speedup in average inference time and consistent performance improvement in downstream tasks.
Model editing aims to correct outdated or erroneous knowledge in large language models (LLMs) without the need for costly retraining. Lifelong model editing is the most challenging task that caters to the continuous editing requirements of LLMs. Prior works primarily focus on single or batch editing; nevertheless, these methods fall short in lifelong editing scenarios due to catastrophic knowledge forgetting and the degradation of model performance. Although retrieval-based methods alleviate these issues, they are impeded by slow and cumbersome processes of integrating the retrieved knowledge into the model. In this work, we introduce RECIPE, a RetriEval-augmented ContInuous Prompt lEarning method, to boost editing efficacy and inference efficiency in lifelong learning. RECIPE first converts knowledge statements into short and informative continuous prompts, prefixed to the LLM’s input query embedding, to efficiently refine the response grounded on the knowledge. It further integrates the Knowledge Sentinel (KS) that acts as an intermediary to calculate a dynamic threshold, determining whether the retrieval repository contains relevant knowledge. Our retriever and prompt encoder are jointly trained to achieve editing properties, i.e., reliability, generality, and locality. In our experiments, RECIPE is assessed extensively across multiple LLMs and editing datasets, where it achieves superior editing performance. RECIPE also demonstrates its capability to maintain the overall performance of LLMs alongside showcasing fast editing and inference speed.
Recently, while large language models (LLMs) have demonstrated impressive results, they still suffer from hallucination, i.e., the generation of false information. Model editing is the task of fixing factual mistakes in LLMs; yet, most previous works treat it as a one-time task, paying little attention to ever-emerging mistakes generated by LLMs. We address the task of sequential model editing (SME) that aims to rectify mistakes continuously. A Dynamic Auxiliary Fusion Network (DAFNet) is designed to enhance the semantic interaction among the factual knowledge within the entire sequence, preventing catastrophic forgetting during the editing process of multiple knowledge triples.Specifically, (1) for semantic fusion within a relation triple, we aggregate the intra-editing attention flow into auto-regressive self-attention with token-level granularity in LLMs. We further leverage multi-layer diagonal inter-editing attention flow to update the weighted representations of the entire sequence-level granularity. (2) Considering that auxiliary parameters are required to store the knowledge for sequential editing, we construct a new dataset named DAFSet, fulfilling recent, popular, long-tail and robust properties to enhance the generality of sequential editing. Experiments show DAFNet significantly outperforms strong baselines in single-turn and sequential editing. The usage of DAFSet also consistently improves the performance of other auxiliary network-based methods in various scenarios.
Knowledge-enhanced pre-trained language models (KEPLMs) leverage relation triples from knowledge graphs (KGs) and integrate these external data sources into language models via self-supervised learning. Previous works treat knowledge enhancement as two independent operations, i.e., knowledge injection and knowledge integration. In this paper, we propose to learn Knowledge-Enhanced language representations with Hierarchical Reinforcement Learning (KEHRL), which jointly addresses the problems of detecting positions for knowledge injection and integrating external knowledge into the model in order to avoid injecting inaccurate or irrelevant knowledge. Specifically, a high-level reinforcement learning (RL) agent utilizes both internal and prior knowledge to iteratively detect essential positions in texts for knowledge injection, which filters out less meaningful entities to avoid diverting the knowledge learning direction. Once the entity positions are selected, a relevant triple filtration module is triggered to perform low-level RL to dynamically refine the triples associated with polysemic entities through binary-valued actions. Experiments validate KEHRL’s effectiveness in probing factual knowledge and enhancing the model’s performance on various natural language understanding tasks.
KEPLMs are pre-trained models that utilize external knowledge to enhance language understanding. Previous language models facilitated knowledge acquisition by incorporating knowledge-related pre-training tasks learned from relation triples in knowledge graphs. However, these models do not prioritize learning embeddings for entity-related tokens. Updating all parameters in KEPLM is computationally demanding. This paper introduces TRELM, a Robust and Efficient Pre-training framework for Knowledge-Enhanced Language Models. We observe that text corpora contain entities that follow a long-tail distribution, where some are suboptimally optimized and hinder the pre-training process. To tackle this, we employ a robust approach to inject knowledge triples and employ a knowledge-augmented memory bank to capture valuable information. Moreover, updating a small subset of neurons in the feed-forward networks (FFNs) that store factual knowledge is both sufficient and efficient. Specifically, we utilize dynamic knowledge routing to identify knowledge paths in FFNs and selectively update parameters during pre-training. Experimental results show that TRELM achieves at least a 50% reduction in pre-training time and outperforms other KEPLMs in knowledge probing tasks and multiple knowledge-aware language understanding tasks.
Cross-lingual representation learning transfers knowledge from resource-rich data to resource-scarce ones to improve the semantic understanding abilities of different languages. However, previous works rely on shallow unsupervised data generated by token surface matching, regardless of the global context-aware semantics of the surrounding text tokens. In this paper, we propose an Unsupervised Pseudo Semantic Data Augmentation (UniPSDA) mechanism for cross-lingual natural language understanding to enrich the training data without human interventions. Specifically, to retrieve the tokens with similar meanings for the semantic data augmentation across different languages, we propose a sequential clustering process in 3 stages: within a single language, across multiple languages of a language family, and across languages from multiple language families. Meanwhile, considering the multi-lingual knowledge infusion with context-aware semantics while alleviating computation burden, we directly replace the key constituents of the sentences with the above-learned multi-lingual family knowledge, viewed as pseudo-semantic. The infusion process is further optimized via three de-biasing techniques without introducing any neural parameters. Extensive experiments demonstrate that our model consistently improves the performance on general zero-shot cross-lingual natural language understanding tasks, including sequence classification, information extraction, and question answering.
Knowledge-Enhanced Pre-trained Language Models (KEPLMs) improve the performance of various downstream NLP tasks by injecting knowledge facts from large-scale Knowledge Graphs (KGs). However, existing methods for pre-training KEPLMs with relational triples are difficult to be adapted to close domains due to the lack of sufficient domain graph semantics. In this paper, we propose a Knowledge-enhanced language representation learning framework for various closed domains (KANGAROO) via capturing the implicit graph structure among the entities. Specifically, since the entity coverage rates of closed-domain KGs can be relatively low and may exhibit the global sparsity phenomenon for knowledge injection, we consider not only the shallow relational representations of triples but also the hyperbolic embeddings of deep hierarchical entity-class structures for effective knowledge fusion. Moreover, as two closed-domain entities under the same entity-class often havel locally dense neighbor subgraphs counted by max point biconnected component, we further propose a data augmentation strategy based on contrastive learning over subgraphs to construct hard negative samples of higher quality. It makes the underlying KELPMs better distinguish the semantics of these neighboring entities to further complement the global semantic sparsity. In the experiments, we evaluate KANGAROO over various knowledge-aware and general NLP tasks in both full and few-shot learning settings, outperforming various KEPLM training paradigms performance in closed-domains significantly.
Reasoning is a distinctive human capacity, enabling us to address complex problems by breaking them down into a series of manageable cognitive steps. Yet, complex logical reasoning is still cumbersome for language models. Based on the dual process theory in cognitive science, we are the first to unravel the cognitive reasoning abilities of language models. Our framework employs an iterative methodology to construct a Cognitive Tree (CogTree). The root node of this tree represents the initial query, while the leaf nodes consist of straightforward questions that can be answered directly. This construction involves two main components: the implicit extraction module (referred to as the intuitive system) and the explicit reasoning module (referred to as the reflective system). The intuitive system rapidly generates multiple responses by utilizing in-context examples, while the reflective system scores these responses using comparative learning. The scores guide the intuitive system in its subsequent generation step.Our experimental results on two popular and challenging reasoning tasks indicate that it is possible to achieve a performance level comparable to that of GPT-3.5 (with 175B parameters), using a significantly smaller language model that contains fewer parameters (<=7B) than 5% of GPT-3.5.
Pre-Trained Models (PTMs) have reshaped the development of Natural Language Processing (NLP) and achieved significant improvement in various benchmarks. Yet, it is not easy for industrial practitioners to obtain high-performing PTM-based models without a large amount of labeled training data and deploy them online with fast inference speed. To bridge this gap, EasyNLP is designed to make it easy to build NLP applications, which supports a comprehensive suite of NLP algorithms. It further features knowledge-enhanced pre-training, knowledge distillation and few-shot learning functionalities, and provides a unified framework of model training, inference and deployment for real-world applications. EasyNLP has powered over ten business units within Alibaba Group and is seamlessly integrated to the Platform of AI (PAI) products on Alibaba Cloud. The source code of EasyNLP is released at GitHub (https://github.com/alibaba/EasyNLP).
Recently, knowledge-enhanced pre-trained language models (KEPLMs) improve context-aware representations via learning from structured relations in knowledge bases, and/or linguistic knowledge from syntactic or dependency analysis. Unlike English, there is a lack of high-performing open-source Chinese KEPLMs in the natural language processing (NLP) community to support various language understanding applications. In this paper, we revisit and advance the development of Chinese natural language understanding with a series of novel Chinese KEPLMs released in various parameter sizes, namely CKBERT (Chinese knowledge-enhanced BERT). Specifically, both relational and linguistic knowledge is effectively injected into CKBERT based on two novel pre-training tasks, i.e., linguistic-aware masked language modeling and contrastive multi-hop relation modeling. Based on the above two pre-training paradigms and our in-house implemented TorchAccelerator, we have pre-trained base (110M), large (345M) and huge (1.3B) versions of CKBERT efficiently on GPU clusters. Experiments demonstrate that CKBERT consistently outperforms strong baselines for Chinese over various benchmark NLP tasks and in terms of different model sizes.
Distant supervision assumes that any sentence containing the same entity pairs reflects identical relationships. Previous works of distantly supervised relation extraction (DSRE) task generally focus on sentence-level or bag-level de-noising techniques independently, neglecting the explicit interaction with cross levels. In this paper, we propose a hierarchical contrastive learning Framework for Distantly Supervised relation extraction (HiCLRE) to reduce noisy sentences, which integrate the global structural information and local fine-grained interaction. Specifically, we propose a three-level hierarchical learning framework to interact with cross levels, generating the de-noising context-aware representations via adapting the existing multi-head self-attention, named Multi-Granularity Recontextualization. Meanwhile, pseudo positive samples are also provided in the specific level for contrastive learning via a dynamic gradient-based data augmentation strategy, named Dynamic Gradient Adversarial Perturbation. Experiments demonstrate that HiCLRE significantly outperforms strong baselines in various mainstream DSRE datasets.
Recently, the performance of Pre-trained Language Models (PLMs) has been significantly improved by injecting knowledge facts to enhance their abilities of language understanding. For medical domains, the background knowledge sources are especially useful, due to the massive medical terms and their complicated relations are difficult to understand in text. In this work, we introduce SMedBERT, a medical PLM trained on large-scale medical corpora, incorporating deep structured semantic knowledge from neighbours of linked-entity. In SMedBERT, the mention-neighbour hybrid attention is proposed to learn heterogeneous-entity information, which infuses the semantic representations of entity types into the homogeneous neighbouring entity structure. Apart from knowledge integration as external features, we propose to employ the neighbors of linked-entities in the knowledge graph as additional global contexts of text mentions, allowing them to communicate via shared neighbors, thus enrich their semantic representations. Experiments demonstrate that SMedBERT significantly outperforms strong baselines in various knowledge-intensive Chinese medical tasks. It also improves the performance of other tasks such as question answering, question matching and natural language inference.