Tara Kulshrestha
2024
Are LLMs Effective Negotiators? Systematic Evaluation of the Multifaceted Capabilities of LLMs in Negotiation Dialogues
Deuksin Kwon
|
Emily Weiss
|
Tara Kulshrestha
|
Kushal Chawla
|
Gale Lucas
|
Jonathan Gratch
Findings of the Association for Computational Linguistics: EMNLP 2024
A successful negotiation requires a range of capabilities, including comprehension of the conversation context, Theory-of-Mind (ToM) skills to infer the partner’s motives, strategic reasoning, and effective communication, making it challenging for automated systems. Despite the remarkable performance of LLMs in various NLP tasks, there is no systematic evaluation of their capabilities in negotiation. Such an evaluation is critical for advancing AI negotiation agents and negotiation research, ranging from designing dialogue systems to providing pedagogical feedback and scaling up data collection practices. This work aims to systematically analyze the multifaceted capabilities of LLMs across diverse dialogue scenarios throughout the stages of a typical negotiation interaction. Our analysis highlights GPT-4’s superior performance in many tasks while identifying specific challenges, such as making subjective assessments and generating contextually appropriate, strategically advantageous responses.