The rise of large language models (LLMs) generating human-like text has raised concerns about misuse, especially in low-resource languages like Urdu. To address this gap, we introduce the HLU dataset, which consists of three datasets: Document, Paragraph, and Sentence level. The document-level dataset contains 1,014 instances of human-written and LLM-generated articles across 13 domains, while the paragraph and sentence-level datasets each contain 667 instances. We conducted both human and automatic evaluations. In the human evaluation, the average accuracy at the document level was 35%, while at the paragraph and sentence levels, accuracies were 75.68% and 88.45%, respectively. For automatic evaluation, we finetuned the XLMRoBERTa model for both monolingual and multilingual settings achieving consistent results in both. Additionally, we assessed the performance of GPT4 and Claude3Opus using zero-shot prompting. Our experiments and evaluations indicate that distinguishing between human and machine-generated text is challenging for both humans and LLMs, marking a significant step in addressing this issue in Urdu.
Advancements in dialogue systems powered by large language models (LLMs) have outpaced the development of reliable evaluation metrics, particularly for diverse and creative responses. We present a benchmark for evaluating the robustness of reference-free dialogue metrics against four categories of adversarial attacks: speaker tag prefixes, static responses, ungrammatical responses, and repeated conversational context. We analyze metrics such as DialogRPT, UniEval, and PromptEval—a prompt-based method leveraging LLMs—across grounded and ungrounded datasets. By examining both their correlation with human judgment and susceptibility to adversarial attacks, we find that these two axes are not always aligned; metrics that appear to be equivalent when judged by traditional benchmarks may, in fact, vary in their scores of adversarial responses. These findings motivate the development of nuanced evaluation frameworks to address real-world dialogue challenges.
Geocoding is a fundamental technique that links location mentions to their geographic positions, which is important for understanding texts in terms of where the described events occurred. Unlike most geocoding studies that targeted coarse-grained locations, we focus on geocoding at a fine-grained point-of-interest (POI) level. To address the challenge of finding appropriate geo-database entries from among many candidates with similar POI names, we develop a text embedding-based geocoding model and investigate (1) entry encoding representations and (2) hard negative mining approaches suitable for enhancing the model’s disambiguation ability. Our experiments show that the second factor significantly impact the geocoding accuracy of the model.
Word frequency is a key variable in psycholinguistics, useful for modeling human familiarity with words even in the era of large language models (LLMs). Frequency in film subtitles has proved to be a particularly good approximation of everyday language exposure. For many languages, however, film subtitles are not easily available, or are overwhelmingly translated from English. We demonstrate that frequencies extracted from carefully processed YouTube subtitles provide an approximation comparable to, and often better than, the best currently available resources. Moreover, they are available for languages for which a high-quality subtitle or speech corpus does not exist. We use YouTube subtitles to construct frequency norms for five diverse languages, Chinese, English, Indonesian, Japanese, and Spanish, and evaluate their correlation with lexical decision time, word familiarity, and lexical complexity. In addition to being strongly correlated with two psycholinguistic variables, a simple linear regression on the new frequencies achieves a new high score on a lexical complexity prediction task in English and Japanese, surpassing both models trained on film subtitle frequencies and the LLM GPT-4. We publicly release our code, the frequency lists, fastText word embeddings, and statistical language models.
Large-scale Vision-Language Models (LVLMs) process both images and text, excelling in multimodal tasks such as image captioning and description generation. However, while these models excel at generating factual content, their ability to generate and evaluate texts reflecting perspectives on the same image, depending on the context, has not been sufficiently explored. To address this, we propose IRR: Image Review Rank, a novel evaluation framework designed to assess critic review texts from multiple perspectives. IRR evaluates LVLMs by measuring how closely their judgments align with human interpretations. We validate it using a dataset of images from 15 categories, each with five critic review texts and annotated rankings in both English and Japanese, totaling over 2,000 data instances. Our results indicate that, although LVLMs exhibited consistent performance across languages, their correlation with human annotations was insufficient, highlighting the need for further advancements. These findings highlight the limitations of current evaluation methods and the need for approaches that better capture human reasoning in Vision & Language tasks.
Large-scale Vision-Language Models (LVLMs) output text from images and instructions, demonstrating advanced capabilities in text generation and comprehension. However, it has not been clarified to what extent LVLMs understand the knowledge necessary for explaining images, the complex relationships between various pieces of knowledge, and how they integrate these understandings into their explanations. To address this issue, we propose a new task: the artwork explanation generation task, along with its evaluation dataset and metric for quantitatively assessing the understanding and utilization of knowledge about artworks. This task is apt for image description based on the premise that LVLMs are expected to have pre-existing knowledge of artworks, which are often subjects of wide recognition and documented information.It consists of two parts: generating explanations from both images and titles of artworks, and generating explanations using only images, thus evaluating the LVLMs’ language-based and vision-based knowledge.Alongside, we release a training dataset for LVLMs to learn explanations that incorporate knowledge about artworks.Our findings indicate that LVLMs not only struggle with integrating language and visual information but also exhibit a more pronounced limitation in acquiring knowledge from images alone. The datasets ExpArt=Explain Artworks are available at https://huggingface.co/datasets/naist-nlp/ExpArt
This paper presents our approach to the AmericasNLP 2024 Shared Task 2 as the JAJ (/dʒæz/) team. The task aimed at creating educational materials for indigenous languages, and we focused on Maya and Bribri. Given the unique linguistic features and challenges of these languages, and the limited size of the training datasets, we developed a hybrid methodology combining rule-based NLP methods with prompt-based techniques. This approach leverages the meta-linguistic capabilities of large language models, enabling us to blend broad, language-agnostic processing with customized solutions. Our approach lays a foundational framework that can be expanded to other indigenous languages languages in future work.
The natural language understanding (NLU) performance of large language models (LLMs) has been evaluated across various tasks and datasets. The existing evaluation methods, however, do not take into account the variance in scores due to differences in prompts, which leads to unfair evaluation and comparison of NLU performance. Moreover, evaluation designed for specific prompts is inappropriate for instruction tuning, which aims to perform well with any prompt. It is therefore necessary to find a way to measure NLU performance in a fair manner, considering score variance between different instruction templates. In this study, we provide English and Japanese cross-lingual datasets for evaluating the NLU performance of LLMs, which include multiple instruction templates for fair evaluation of each task, along with regular expressions to constrain the output format. Furthermore, we propose the Sharpe score as an evaluation metric that takes into account the variance in scores between templates. Comprehensive analysis of English and Japanese LLMs reveals that the high variance among templates has a significant impact on the fair evaluation of LLMs.
Generating multiple translation candidates would enable users to choose the one that satisfies their needs.Although there has been work on diversified generation, there exists room for improving the diversity mainly because the previous methods do not address the overcorrection problem—the model underestimates a prediction that is largely different from the training data, even if that prediction is likely.This paper proposes methods that generate more diverse translations by introducing perturbed k-nearest neighbor machine translation (kNN-MT).Our methods expand the search space of kNN-MT and help incorporate diverse words into candidates by addressing the overcorrection problem.Our experiments show that the proposed methods drastically improve candidate diversity and control the degree of diversity by tuning the perturbation’s magnitude.
Post-editing is crucial in the real world because neural machine translation (NMT) sometimes makes errors.Automatic post-editing (APE) attempts to correct the outputs of an MT model for better translation quality.However, many APE models are based on sequence generation, and thus their decisions are harder to interpret for actual users.In this paper, we propose “detector–corrector”, an edit-based post-editing model, which breaks the editing process into two steps, error detection and error correction.The detector model tags each MT output token whether it should be corrected and/or reordered while the corrector model generates corrected words for the spans identified as errors by the detector.Experiments on the WMT’20 English–German and English–Chinese APE tasks showed that our detector–corrector improved the translation edit rate (TER) compared to the previous edit-based model and a black-box sequence-to-sequence APE model, in addition, our model is more explainable because it is based on edit operations.
This work investigates the impact of data augmentation on confidence calibration and uncertainty estimation in Named Entity Recognition (NER) tasks. For the future advance of NER in safety-critical fields like healthcare and finance, it is essential to achieve accurate predictions with calibrated confidence when applying Deep Neural Networks (DNNs), including Pre-trained Language Models (PLMs), as a real-world application. However, DNNs are prone to miscalibration, which limits their applicability. Moreover, existing methods for calibration and uncertainty estimation are computational expensive. Our investigation in NER found that data augmentation improves calibration and uncertainty in cross-genre and cross-lingual setting, especially in-domain setting. Furthermore, we showed that the calibration for NER tends to be more effective when the perplexity of the sentences generated by data augmentation is lower, and that increasing the size of the augmentation further improves calibration and uncertainty.
What kinds of and how much data is necessary for language models to induce grammatical knowledge to judge sentence acceptability? Recent language models still have much room for improvement in their data efficiency compared to humans. This paper investigates whether language models efficiently use indirect data (indirect evidence), from which they infer sentence acceptability. In contrast, humans use indirect evidence efficiently, which is considered one of the inductive biases contributing to efficient language acquisition. To explore this question, we introduce the Wug InDirect Evidence Test (WIDET), a dataset consisting of training instances inserted into the pre-training data and evaluation instances. We inject synthetic instances with newly coined wug words into pretraining data and explore the model’s behavior on evaluation data that assesses grammatical acceptability regarding those words. We prepare the injected instances by varying their levels of indirectness and quantity. Our experiments surprisingly show that language models do not induce grammatical knowledge even after repeated exposure to instances with the same structure but differing only in lexical items from evaluation instances in certain language phenomena. Our findings suggest a potential direction for future research: developing models that use latent indirect evidence to induce grammatical knowledge.
Multilingual neural machine translation models support fine-tuning hundreds of languages simultaneously. However, fine-tuning on full parameters solely is inefficient potentially leading to negative interactions among languages. In this work, we demonstrate that the fine-tuning for a language occurs in its intrinsic language-specific subspace with a tiny fraction of entire parameters. Thus, we propose language-specific LoRA to isolate intrinsic language-specific subspaces. Furthermore, we propose architecture learning techniques and introduce a gradual pruning schedule during fine-tuning to exhaustively explore the optimal setting and the minimal intrinsic subspaces for each language, resulting in a lightweight yet effective fine-tuning procedure. The experimental results on a 12-language subset and a 30-language subset of FLORES-101 show that our methods not only outperform full-parameter fine-tuning up to 2.25 spBLEU scores but also reduce trainable parameters to 0.4% for high and medium-resource languages and 1.6% for low-resource ones.
Simultaneous Speech Translation (SiST) begins translating before the entire source input is received, making it crucial to balance quality and latency. In real interpreting situations, interpreters manage this simultaneity by breaking sentences into smaller segments and translating them while maintaining the source order as much as possible. SiST could benefit from this approach to balance quality and latency. However, current corpora used for simultaneous tasks often involve significant word reordering in translation, which is not ideal given that interpreters faithfully follow source syntax as much as possible. Inspired by conference interpreting by humans utilizing the salami technique, we introduce the Simul-MuST-C, a dataset created by leveraging the Large Language Model (LLM), specifically GPT-4o, which aligns the target text as closely as possible to the source text by using minimal chunks that contain enough information to be interpreted. Experiments on three language pairs show that the effectiveness of segmented-base monotonicity in training data varies with the grammatical distance between the source and the target, with grammatically distant language pairs benefiting the most in achieving quality while minimizing latency.
In Simultaneous Machine Translation (SiMT), training with a simultaneous interpretation (SI) corpus is an effective method for achieving high-quality yet low-latency. However, constructing such a corpus is challenging due to high costs, and limitations in annotator capabilities, and as a result, existing SI corpora are limited. Therefore, we propose a method to convert existing speech translation (ST) corpora into interpretation-style corpora, maintaining the original word order and preserving the entire source content using Large Language Models (LLM-SI-Corpus). We demonstrate that fine-tuning SiMT models using the LLM-SI-Corpus reduces latency while achieving better quality compared to models fine-tuned with other corpora in both speech-to-text and text-to-text settings. The LLM-SI-Corpus is available at https://github.com/yusuke1997/LLM-SI-Corpus.
Geoparsing is a fundamental technique for analyzing geo-entity information in text, which is useful for geographic applications, e.g., tourist spot recommendation. We focus on document-level geoparsing that considers geographic relatedness among geo-entity mentions and present a Japanese travelogue dataset designed for training and evaluating document-level geoparsing systems. Our dataset comprises 200 travelogue documents with rich geo-entity information: 12,171 mentions, 6,339 coreference clusters, and 2,551 geo-entities linked to geo-database entries.
Japanese input method editors (IMEs) are essential tools for inputting Japanese text using a limited set of characters such as the kana syllabary. However, despite their importance, the potential of newer attention-based encoder-decoder neural networks, such as Transformer, has not yet been fully explored for IMEs due to their high computational cost and low-quality intermediate output in simultaneous settings, leading to high latencies. In this work, we propose a simple decoding policy to enable the use of attention-based encoder-decoder networks for simultaneous kana-kanji conversion in the context of Japanese IMEs inspired by simultaneous machine translation (SimulMT). We demonstrate that simply decoding by explicitly considering the word boundaries achieves a fairly strong quality-latency trade-off, as it can be seen as equivalent to performing decoding on aligned prefixes and thus achieving an incremental anticipation-free conversion. We further show how such a policy can be applied in practice to achieve high-quality conversions with minimal computational overhead. Our experiments show that our approach can achieve a noticeably better quality-latency trade-off compared to the baselines, while also being a more practical approach due to its ability to directly handle streaming input. Our code is available at https://anonymous.4open.science/r/transformer_ime-D327.
Large language models with instruction-following abilities have revolutionized the field of artificial intelligence. These models show exceptional generalizability to tackle various real-world tasks through their natural language interfaces. However, their performance heavily relies on high-quality exemplar data, which is often difficult to obtain. This challenge is further exacerbated when it comes to multimodal instruction following. We introduce TextBind, an almost annotation-free framework for empowering LLMs with multi-turn interleaved multimodal instruction-following capabilities. Our approach requires only image-caption pairs and generates multi-turn multimodal instruction-response conversations from a language model. To accommodate interleaved image-text inputs and outputs, we devise MIM, a language model-centric architecture that seamlessly integrates image encoder and decoder models. Extensive quantitative and qualitative experiments demonstrate that MIM trained on TextBind achieves remarkable generation capability in multimodal conversations compared to recent baselines.
Minimum Bayes risk (MBR) decoding achieved state-of-the-art translation performance by using COMET, a neural metric that has a high correlation with human evaluation.However, MBR decoding requires quadratic time since it computes the expected score between a translation hypothesis and all reference translations.We propose centroid-based MBR (CBMBR) decoding to improve the speed of MBR decoding.Our method clusters the reference translations in the feature space, and then calculates the score using the centroids of each cluster.The experimental results show that our CBMBR not only improved the decoding speed of the expected score calculation 5.7 times, but also outperformed vanilla MBR decoding in translation quality by up to 0.5 COMET in the WMT’22 En↔Ja, En↔De, En↔Zh, and WMT’23 En↔Ja translation tasks.
It is very challenging to curate a dataset for language-specific knowledge and common sense in order to evaluate natural language understanding capabilities of language models. Due to the limitation in the availability of annotators, most current multilingual datasets are created through translation, which cannot evaluate such language-specific aspects. Therefore, we propose Multilingual CommonsenseQA (mCSQA) based on the construction process of CSQA but leveraging language models for a more efficient construction, e.g., by asking LM to generate questions/answers, refine answers and verify QAs followed by reduced human efforts for verification. Constructed dataset is a benchmark for cross-lingual language-transfer capabilities of multilingual LMs, and experimental results showed high language-transfer capabilities for questions that LMs could easily solve, but lower transfer capabilities for questions requiring deep knowledge or commonsense. This highlights the necessity of language-specific datasets for evaluation and training. Finally, our method demonstrated that multilingual LMs could create QA including language-specific knowledge, significantly reducing the dataset creation cost compared to manual creation. The datasets are available at https://huggingface.co/datasets/yusuke1997/mCSQA.
The imitation of the children’s language acquisition process has been explored to make language models (LMs) more efficient.In particular, errors caused by children’s regularization (so-called overregularization, e.g., using wroted for the past tense of write) have been widely studied to reveal the mechanisms of language acquisition. Existing research has analyzed regularization in language acquisition only by modeling word inflection directly, which is unnatural in light of human language acquisition. In this paper, we hypothesize that language models that imitate the errors children make during language acquisition have a learning process more similar to humans. To verify this hypothesis, we analyzed the learning curve and error preferences of verb inflections in small-scale LMs using acceptability judgments. We analyze the differences in results by model architecture, data, and tokenization. Our model shows child-like U-shaped learning curves clearly for certain verbs, but the preferences for types of overgeneralization did not fully match the observations in children.
Phrase-level dense retrieval has shown many appealing characteristics in downstream NLP tasks by leveraging the fine-grained information that phrases offer. In our work, we propose a new task formulation of dense retrieval, cross-lingual contextualized phrase retrieval, which aims to augment cross-lingual applications by addressing polysemy using context information. However, the lack of specific training data and models are the primary challenges to achieve our goal. As a result, we extract pairs of cross-lingual phrases using word alignment information automatically induced from parallel sentences. Subsequently, we train our Cross-lingual Contextualized Phrase Retriever (CCPR) using contrastive learning, which encourages the hidden representations of phrases with similar contexts and semantics to align closely. Comprehensive experiments on both the cross-lingual phrase retrieval task and a downstream task, i.e, machine translation, demonstrate the effectiveness of CCPR. On the phrase retrieval task, CCPR surpasses baselines by a significant margin, achieving a top-1 accuracy that is at least 13 points higher. When utilizing CCPR to augment the large-language-model-based translator, it achieves average gains of 0.7 and 1.5 in BERTScore for translations from X=>En and vice versa, respectively, on WMT16 dataset. We will release our code and data.
Research in low-resource language is often hampered due to the under-representation of how the language is being used in reality. This is particularly true for Indonesian language because there is a limited variety of textual datasets, and majority were acquired from official sources with formal writing style. All the more for the task of geoparsing, which could be implemented for navigation and travel planning applications, such datasets are rare, even in the high-resource languages, such as English. Being aware of the need for a new resource in both languages for this specific task, we constructed a new dataset comprising both Indonesian and English from personal travelogue articles. Our dataset consists of 88 articles, exactly half of them written in each language. We covered both named and nominal expressions of four entity types related to travel: location, facility, transportation, and line. We also conducted experiments by training classifiers to recognise named entities and their nominal expressions. The results of our experiments showed a promising future use of our dataset as we obtained F1-score above 0.9 for both languages.
Multilingual neural machine translation aims to encapsulate multiple languages into a single model. However, it requires an enormous dataset, leaving the low-resource language (LRL) underdeveloped. As LRLs may benefit from shared knowledge of multilingual representation, we aspire to find effective ways to integrate unseen languages in a pre-trained model. Nevertheless, the intricacy of shared representation among languages hinders its full utilisation. To resolve this problem, we employed target language prediction and a central language-aware layer to improve representation in integrating LRLs. Focusing on improving LRLs in the linguistically diverse country of Indonesia, we evaluated five languages using a parallel corpus of 1,000 instances each, with experimental results measured by BLEU showing zero-shot improvement of 7.4 from the baseline score of 7.1 to a score of 15.5 at best. Further analysis showed that the gains in performance are attributed more to the disentanglement of multilingual representation in the encoder with the shift of the target language-specific representation in the decoder.
Document question answering is a task of question answering on given documents such as reports, slides, pamphlets, and websites, and it is a truly demanding task as paper and electronic forms of documents are so common in our society. This is known as a quite challenging task because it requires not only text understanding but also understanding of figures and tables, and hence visual question answering (VQA) methods are often examined in addition to textual approaches. We introduce Japanese Document Question Answering (JDocQA), a large-scale document-based QA dataset, essentially requiring both visual and textual information to answer questions, which comprises 5,504 documents in PDF format and annotated 11,600 question-and-answer instances in Japanese. Each QA instance includes references to the document pages and bounding boxes for the answer clues. We incorporate multiple categories of questions and unanswerable questions from the document for realistic question-answering applications. We empirically evaluate the effectiveness of our dataset with text-based large language models (LLMs) and multimodal models. Incorporating unanswerable questions in finetuning may contribute to harnessing the so-called hallucination generation.
Paraphrase detection is a task to identify if two sentences are semantically similar or not. It plays an important role in maintaining the integrity of written work such as plagiarism detection and text reuse detection. Formerly, researchers focused on developing large corpora for English. However, no research has been conducted on sentence-level paraphrase detection in low-resource Pashto language. To bridge this gap, we introduce the first fully manually annotated Pashto sentential paraphrase detection corpus collected from authentic cases in journalism covering 10 different domains, including Sports, Health, Environment, and more. Our proposed corpus contains 6,727 sentences, encompassing 3,687 paraphrased and 3,040 non-paraphrased. Experimental findings reveal that our proposed corpus is sufficient to train XLM-RoBERTa to accurately detect paraphrased sentence pairs in Pashto with an F1 score of 84%. To compare our corpus with those in other languages, we also applied our fine-tuned model to the Indonesian and English paraphrase datasets in a zero-shot manner, achieving F1 scores of 82% and 78%, respectively. This result indicates that the quality of our corpus is not less than commonly used datasets. It‘s a pioneering contribution to the field. We will publicize a subset of 1,800 instances from our corpus, free from any licensing issues.
Knowledge graphs (KGs) consist of links that describe relationships between entities. Due to the difficulty of manually enumerating all relationships between entities, automatically completing them is essential for KGs. Knowledge Graph Completion (KGC) is a task that infers unseen relationships between entities in a KG. Traditional embedding-based KGC methods (e.g. RESCAL, TransE, DistMult, ComplEx, RotatE, HAKE, HousE, etc.) infer missing links using only the knowledge from training data. In contrast, the recent Pre-trained Language Model (PLM)-based KGC utilizes knowledge obtained during pre-training, which means it can estimate missing links between entities by reusing memorized knowledge from pre-training without inference. This part is problematic because building KGC models aims to infer unseen links between entities. However, conventional evaluations in KGC do not consider inference and memorization abilities separately. Thus, a PLM-based KGC method, which achieves high performance in current KGC evaluations, may be ineffective in practical applications. To address this issue, we analyze whether PLM-based KGC methods make inferences or merely access memorized knowledge. For this purpose, we propose a method for constructing synthetic datasets specified in this analysis and conclude that PLMs acquire the inference abilities required for KGC through pre-training, even though the performance improvements mostly come from textual information of entities and relations.
Automatic extraction of geographic information, including Location Referring Expressions (LREs), can aid humanities research in analyzing large collections of historical texts. In this study, to investigate how accurate pretrained Transformer language models (LMs) can extract LREs from historical texts, we evaluate two representative types of LMs, namely, masked language model and causal language model, using early modern and contemporary Japanese datasets. Our experimental results demonstrated the potential of contemporary LMs for historical texts, but also suggest the need for further model enhancement, such as pretraining on historical texts.
Knowledge Graphs (KGs) are fundamental resources in knowledge-intensive tasks in NLP. Due to the limitation of manually creating KGs, KG Completion (KGC) has an important role in automatically completing KGs by scoring their links with KG Embedding (KGE). To handle many entities in training, KGE relies on Negative Sampling (NS) loss that can reduce the computational cost by sampling. Since the appearance frequencies for each link are at most one in KGs, sparsity is an essential and inevitable problem. The NS loss is no exception. As a solution, the NS loss in KGE relies on smoothing methods like Self-Adversarial Negative Sampling (SANS) and subsampling. However, it is uncertain what kind of smoothing method is suitable for this purpose due to the lack of theoretical understanding. This paper provides theoretical interpretations of the smoothing methods for the NS loss in KGE and induces a new NS loss, Triplet Adaptive Negative Sampling (TANS), that can cover the characteristics of the conventional smoothing methods. Experimental results of TransE, DistMult, ComplEx, RotatE, HAKE, and HousE on FB15k-237, WN18RR, and YAGO3-10 datasets and their sparser subsets show the soundness of our interpretation and performance improvement by our TANS.
Tables in scientific papers contain crucial information, such as experimental results.Entity Linking (EL) is a promising technology that analyses tables and associates them with a knowledge base.EL for table cells requires identifying the referent concept of each cell while understanding the context relevant to each cell in the paper. However, extracting the relevant context from the paper is challenging because the relevant parts are scattered in the main text and captions.This study defines a rule-based method for extracting broad context from the main text, including table captions and sentences that mention the table.Furthermore, we propose synthetic context as a more refined context generated by large language models (LLMs).In a synthetic context, contexts from the entire paper are refined by summarizing, injecting supplemental knowledge, and clarifying the referent concept.We observe this approach improves accuracy for EL by more than 10 points on the S2abEL dataset, and our qualitative analysis suggests potential future works.
In Japanese, loanwords are primarily written in Katakana, a syllabic writing system, based on their pronunciation. However, the transliterated loanwords often exhibit spelling variations, such as the word “Hepburn” being written as “ヘボン (hebon)”, “ヘプバーン (hepubaan)”, “ヘップバーン (heppubaan)”. These orthographical variants pose a bottleneck in multilingual Named Entity Recognition (NER), because named entities (NEs) do not have one-to-one matches. In this study, we introduce a rule-based grapheme-to-phoneme (G2P) system for Japanese based on literature in linguistics and a large-scale multilingual NE dataset with annotations of the International Phonetic Alphabet (IPA), focusing on IPA to address the Katakana spelling variations in loanwords. These rules and dataset are expected to be beneficial for tasks such as NE aggregation, G2P system, construction of cross-lingual language models, and entity linking. We hope our work advances research on Japanese NER with multilingual loanwords by solving the spelling ambiguities.
Despite significant improvements in enhancing the quality of translation, context-aware machine translation (MT) models underperform in many cases. One of the main reasons is that they fail to utilize the correct features from context when the context is too long or their models are overly complex. This can lead to the explain-away effect, wherein the models only consider features easier to explain predictions, resulting in inaccurate translations. To address this issue, we propose a model that explains the decisions made for translation by predicting coreference features in the input. We construct a model for input coreference by exploiting contextual features from both the input and translation output representations on top of an existing MT model. We evaluate and analyze our method in the WMT document-level translation task of English-German dataset, the English-Russian dataset, and the multilingual TED talk dataset, demonstrating an improvement of over 1.0 BLEU score when compared with other context-aware models.
The tasks of lexical complexity prediction (LCP) and complex word identification (CWI) commonly presuppose that difficult-to-understand words are shared by the target population. Meanwhile, personalization methods have also been proposed to adapt models to individual needs. We verify that a recent Japanese LCP dataset is representative of its target population by partially replicating the annotation. By another reannotation we show that native Chinese speakers perceive the complexity differently due to Sino-Japanese vocabulary. To explore the possibilities of personalization, we compare competitive baselines trained on the group mean ratings and individual ratings in terms of performance for an individual. We show that the model trained on a group mean performs similarly to an individual model in the CWI task, while achieving good LCP performance for an individual is difficult. We also experiment with adapting a finetuned BERT model, which results only in marginal improvements across all settings.
k-nearest-neighbor machine translation (kNN-MT) (Khandelwal et al., 2021) boosts the translation performance of trained neural machine translation (NMT) models by incorporating example-search into the decoding algorithm. However, decoding is seriously time-consuming, i.e., roughly 100 to 1,000 times slower than standard NMT, because neighbor tokens are retrieved from all target tokens of parallel data in each timestep. In this paper, we propose “Subset kNN-MT”, which improves the decoding speed of kNN-MT by two methods: (1) retrieving neighbor target tokens from a subset that is the set of neighbor sentences of the input sentence, not from all sentences, and (2) efficient distance computation technique that is suitable for subset neighbor search using a look-up table. Our proposed method achieved a speed-up of up to 132.2 times and an improvement in BLEU score of up to 1.6 compared with kNN-MT in the WMT’19 De-En translation task and the domain adaptation tasks in De-En and En-Ja.
In this paper, we propose a table and image generation task to verify how the knowledge about entities acquired from natural language is retained in Vision & Language (V & L) models. This task consists of two parts: the first is to generate a table containing knowledge about an entity and its related image, and the second is to generate an image from an entity with a caption and a table containing related knowledge of the entity. In both tasks, the model must know the entities used to perform the generation properly. We created the Wikipedia Table and Image Generation (WikiTIG) dataset from about 200,000 infoboxes in English Wikipedia articles to perform the proposed tasks. We evaluated the performance on the tasks with respect to the above research question using the V & L model OFA, which has achieved state-of-the-art results in multiple tasks. Experimental results show that OFA forgets part of its entity knowledge by pre-training as a complement to improve the performance of image related tasks.
In various natural language processing tasks, such as named entity recognition and machine translation, example-based approaches have been used to improve performance by leveraging existing knowledge. However, the effectiveness of this approach for Grammatical Error Correction (GEC) is unclear. In this work, we explore how an example-based approach affects the accuracy and interpretability of the output of GEC systems and the trade-offs involved. The approach we investigate has shown great promise in machine translation by using the $k$-nearest translation examples to improve the results of a pretrained Transformer model. We find that using this technique increases precision by reducing the number of false positives, but recall suffers as the model becomes more conservative overall. Increasing the number of example sentences in the datastore does lead to better performing systems, but with diminishing returns and a high decoding cost. Synthetic data can be used as examples, but the effectiveness varies depending on the base model. Finally, we find that finetuning on a set of data may be more effective than using that data during decoding as examples.
Lexical complexity prediction (LCP) is the task of predicting the complexity of words in a text on a continuous scale. It plays a vital role in simplifying or annotating complex words to assist readers. To study lexical complexity in Japanese, we construct the first Japanese LCP dataset. Our dataset provides separate complexity scores for Chinese/Korean annotators and others to address the readers’ L1-specific needs. In the baseline experiment, we demonstrate the effectiveness of a BERT-based system for Japanese LCP.
This paper presents our approach to the BEA 2023 shared task of generating teacher responses in educational dialogues, using the Teacher-Student Chatroom Corpus. Our system prompts GPT-3.5-turbo to generate initial suggestions, which are then subjected to reranking. We explore multiple strategies for candidate generation, including prompting for multiple candidates and employing iterative few-shot prompts with negative examples. We aggregate all candidate responses and rerank them based on DialogRPT scores. To handle consecutive turns in the dialogue data, we divide the task of generating teacher utterances into two components: teacher replies to the student and teacher continuations of previously sent messages. Through our proposed methodology, our system achieved the top score on both automated metrics and human evaluation, surpassing the reference human teachers on the latter.
With the success of neural language models (LMs), their language acquisition has gained much attention. This work sheds light on the second language (L2) acquisition of LMs, while previous work has typically explored their first language (L1) acquisition. Specifically, we trained bilingual LMs with a scenario similar to human L2 acquisition and analyzed their cross-lingual transfer from linguistic perspectives. Our exploratory experiments demonstrated that the L1 pretraining accelerated their linguistic generalization in L2, and language transfer configurations (e.g., the L1 choice, and presence of parallel texts) substantially affected their generalizations. These clarify their (non-)human-like L2 acquisition in particular aspects.
In this paper, we describe our NAIST-NICT submission to the WMT’23 English ↔ Japanese general machine translation task. Our system generates diverse translation candidates and reranks them using a two-stage reranking system to find the best translation. First, we generated 50 candidates each from 18 translation methods using a variety of techniques to increase the diversity of the translation candidates. We trained seven models per language direction using various combinations of hyperparameters. From these models we used various decoding algorithms, ensembling the models, and using kNN-MT (Khandelwal et al., 2021). We processed the 900 translation candidates through a two-stage reranking system to find the most promising candidate. In the first step, we compared 50 candidates from each translation method using DrNMT (Lee et al., 2021) and returned the candidate with the best score. We ranked the final 18 candidates using COMET-MBR (Fernandes et al., 2022) and returned the best score as the system output. We found that generating diverse translation candidates improved translation quality using the well-designed reranker model.
This paper presents the overview of the second Word-Level autocompletion (WLAC) shared task for computer-aided translation, which aims to automatically complete a target word given a translation context including a human typed character sequence. We largely adhere to the settings of the previous round of the shared task, but with two main differences: 1) The typed character sequence is obtained from the typing process of human translators to demonstrate system performance under real-world scenarios when preparing some type of testing examples; 2) We conduct a thorough analysis on the results of the submitted systems from three perspectives. From the experimental results, we observe that translation tasks are helpful to improve the performance of WLAC models. Additionally, our further analysis shows that the semantic error accounts for a significant portion of all errors, and thus it would be promising to take this type of errors into account in future.
Multilingual neural machine translation can translate unseen language pairs during training, i.e. zero-shot translation. However, the zero-shot translation is always unstable. Although prior works attributed the instability to the domination of central language, e.g. English, we supplement this viewpoint with the strict dependence of non-centered languages. In this work, we propose a simple, lightweight yet effective language-specific modeling method by adapting to non-centered languages and combining the shared information and the language-specific information to counteract the instability of zero-shot translation. Experiments with Transformer on IWSLT17, Europarl, TED talks, and OPUS-100 datasets show that our method not only performs better than strong baselines in centered data conditions but also can easily fit non-centered data conditions. By further investigating the layer attribution, we show that our proposed method can disentangle the coupled representation in the correct direction.
This paper introduces a new Universal Dependencies treebank for the Tatar language named NMCTT. A significant feature of the corpus is that it includes code-switching (CS) information at a morpheme level, given the fact that Tatar texts contain intra-word CS between Tatar and Russian. We first outline NMCTT with a focus on differences from other treebanks of Turkic languages. Then, to evaluate the merit of the CS annotation, this study concisely reports the results of a language identification task implemented with Conditional Random Fields that considers POS tag information, which is readily available in treebanks in the CoNLL-U format. Experimenting on NMCTT and the Turkish-German CS treebank (SAGT), we demonstrate that the proposed annotation scheme introduced in NMCTT can improve the performance of the subword-level language identification. This annotation scheme for CS is not only universally applicable to languages with CS, but also shows a possibility to employ morphosyntactic information for CS-related downstream tasks.
Probing is popular to analyze whether linguistic information can be captured by a well-trained deep neural model, but it is hard to answer how the change of the encoded linguistic information will affect task performance. To this end, we study the dynamic relationship between the encoded linguistic information and task performance from the viewpoint of Pareto Optimality. Its key idea is to obtain a set of models which are Pareto-optimal in terms of both objectives. From this viewpoint, we propose a method to optimize the Pareto-optimal models by formalizing it as a multi-objective optimization problem. We conduct experiments on two popular NLP tasks, i.e., machine translation and language modeling, and investigate the relationship between several kinds of linguistic information and task performances. Experimental results demonstrate that the proposed method is better than a baseline method. Our empirical findings suggest that some syntactic information is helpful for NLP tasks whereas encoding more syntactic information does not necessarily lead to better performance, because the model architecture is also an important factor.
Deep learning has demonstrated performance advantages in a wide range of natural language processing tasks, including neural machine translation (NMT). Transformer NMT models are typically strengthened by deeper encoder layers, but deepening their decoder layers usually results in failure. In this paper, we first identify the cause of the failure of the deep decoder in the Transformer model. Inspired by this discovery, we then propose approaches to improving it, with respect to model structure and model training, to make the deep decoder practical in NMT. Specifically, with respect to model structure, we propose a cross-attention drop mechanism to allow the decoder layers to perform their own different roles, to reduce the difficulty of deep-decoder learning. For model training, we propose a collapse reducing training approach to improve the stability and effectiveness of deep-decoder training. We experimentally evaluated our proposed Transformer NMT model structure modification and novel training methods on several popular machine translation benchmarks. The results showed that deepening the NMT model by increasing the number of decoder layers successfully prevented the deepened decoder from degrading to an unconditional language model. In contrast to prior work on deepening an NMT model on the encoder, our method can deepen the model on both the encoder and decoder at the same time, resulting in a deeper model and improved performance.
N-gram language models (LM) has been largely superseded by neural LMs as the latter exhibits better performance. However, we find that n-gram models can achieve satisfactory performance on a large proportion of testing cases, indicating they have already captured abundant knowledge of the language with relatively low computational cost. With this observation, we propose to learn a neural LM that fits the residual between an n-gram LM and the real-data distribution. The combination of n-gram LMs and neural LMs not only allows the neural part to focus on deeper understanding of the language, but also provides a flexible way to customize a LM by switching the underlying n-gram model without changing the neural model. Experimental results on three typical language tasks (i.e., language modeling, machine translation, and summarization) demonstrate that our approach attains additional performance gains over popular standalone neural models consistently. We also show that our approach allows for effective domain adaptation by simply switching to a domain-specific n-gram model, without any extra training.
Zero-shot relation extraction (ZSRE) aims to predict target relations that cannot be observed during training. While most previous studies have focused on fully supervised relation extraction and achieved considerably high performance, less effort has been made towards ZSRE. This study proposes a new model incorporating discriminative embedding learning for both sentences and semantic relations. In addition, a self-adaptive comparator network is used to judge whether the relationship between a sentence and a relation is consistent. Experimental results on two benchmark datasets showed that the proposed method significantly outperforms the state-of-the-art methods.
A Knowledge Graph (KG) is the directed graphical representation of entities and relations in the real world. KG can be applied in diverse Natural Language Processing (NLP) tasks where knowledge is required. The need to scale up and complete KG automatically yields Knowledge Graph Embedding (KGE), a shallow machine learning model that is suffering from memory and training time consumption issues. To mitigate the computational load, we propose a parameter-sharing method, i.e., using conjugate parameters for complex numbers employed in KGE models. Our method improves memory efficiency by 2x in relation embedding while achieving comparable performance to the state-of-the-art non-conjugate models, with faster, or at least comparable, training time. We demonstrated the generalizability of our method on two best-performing KGE models 5★E (CITATION) and ComplEx (CITATION) on five benchmark datasets.
The user-dependency of Text Simplification makes its evaluation obscure. A targeted evaluation dataset clarifies the purpose of simplification, though its specification is hard to define. We built JADES (JApanese Dataset for the Evaluation of Simplification), a text simplification dataset targeted at non-native Japanese speakers, according to public vocabulary and grammar profiles. JADES comprises 3,907 complex-simple sentence pairs annotated by an expert. Analysis of JADES shows that wide and multiple rewriting operations were applied through simplification. Furthermore, we analyzed outputs on JADES from several benchmark systems and automatic and manual scores of them. Results of these analyses highlight differences between English and Japanese in operations and evaluations.
In this paper, we describe our NAIST-NICT-TIT submission to the WMT22 general machine translation task. We participated in this task for the English ↔ Japanese language pair. Our system is characterized as an ensemble of Transformer big models, k-nearest-neighbor machine translation (kNN-MT) (Khandelwal et al., 2021), and reranking.In our translation system, we construct the datastore for kNN-MT from back-translated monolingual data and integrate kNN-MT into the ensemble model. We designed a reranking system to select a translation from the n-best translation candidates generated by the translation system. We also use a context-aware model to improve the document-level consistency of the translation.
Recent years have witnessed rapid advancements in machine translation, but the state-of-the-art machine translation system still can not satisfy the high requirements in some rigorous translation scenarios. Computer-aided translation (CAT) provides a promising solution to yield a high-quality translation with a guarantee. Unfortunately, due to the lack of popular benchmarks, the research on CAT is not well developed compared with machine translation. In this year, we hold a new shared task called Word-level AutoCompletion (WLAC) for CAT in WMT. Specifically, we introduce some resources to train a WLAC model, and particularly we collect data from CAT systems as a part of test data for this shared task. In addition, we employ both automatic and human evaluations to measure the performance of the submitted systems, and our final evaluation results reveal some findings for the WLAC task.
This paper presents a novel method for nested named entity recognition. As a layered method, our method extends the prior second-best path recognition method by explicitly excluding the influence of the best path. Our method maintains a set of hidden states at each time step and selectively leverages them to build a different potential function for recognition at each level. In addition, we demonstrate that recognizing innermost entities first results in better performance than the conventional outermost entities first scheme. We provide extensive experimental results on ACE2004, ACE2005, and GENIA datasets to show the effectiveness and efficiency of our proposed method.
It is reported that grammatical information is useful for machine translation (MT) task. However, the annotation of grammatical information requires the highly human resources. Furthermore, it is not trivial to adapt grammatical information to MT since grammatical annotation usually adapts tokenization standards which might not be suitable to capture the relation of two languages, and the use of sub-word tokenization, e.g., Byte-Pair-Encoding, to alleviate out-of-vocabulary problem might not be compatible with those annotations. In this work, we propose two methods to explicitly incorporate grammatical information without supervising annotation; first, latent phrase structure is induced in an unsupervised fashion from a multi-head attention mechanism; second, the induced phrase structures in encoder and decoder are synchronized so that they are compatible with each other using constraints during training. We demonstrate that our approach produces better performance and explainability in two tasks, translation and alignment tasks without extra resources. Although we could not obtain the high quality phrase structure in constituency parsing when evaluated monolingually, we find that the induced phrase structures enhance the explainability of translation through the synchronization constraint.
The presence of zero-pronoun (ZP) greatly affects the downstream tasks of NLP in pro-drop languages such as Japanese and Chinese. To tackle the problem, the previous works identified ZPs as sequence labeling on the word sequence or the linearlized tree nodes of the input. We propose a novel approach to ZP identification by casting it as a query-based argument span prediction task. Given a predicate as a query, our model predicts the omission with ZP. In the experiments, our model surpassed the sequence labeling baseline.
We introduce a Cyrillic-to-Latin transliterator for the Tatar language based on subword-level language identification. The transliteration is a challenging task due to the following two reasons. First, because modern Tatar texts often contain intra-word code-switching to Russian, a different transliteration set of rules needs to be applied to each morpheme depending on the language, which necessitates morpheme-level language identification. Second, the fact that Tatar is a low-resource language, with most of the texts in Cyrillic, makes it difficult to prepare a sufficient dataset. Given this situation, we proposed a transliteration method based on subword-level language identification. We trained a language classifier with monolingual Tatar and Russian texts, and applied different transliteration rules in accord with the identified language. The results demonstrate that our proposed method outscores other Tatar transliteration tools, and imply that it correctly transcribes Russian loanwords to some extent.
Unsupervised image captioning is a challenging task that aims at generating captions without the supervision of image-sentence pairs, but only with images and sentences drawn from different sources and object labels detected from the images. In previous work, pseudo-captions, i.e., sentences that contain the detected object labels, were assigned to a given image. The focus of the previous work was on the alignment of input images and pseudo-captions at the sentence level. However, pseudo-captions contain many words that are irrelevant to a given image. In this work, we investigate the effect of removing mismatched words from image-sentence alignment to determine how they make this task difficult. We propose a simple gating mechanism that is trained to align image features with only the most reliable words in pseudo-captions: the detected object labels. The experimental results show that our proposed method outperforms the previous methods without introducing complex sentence-level learning objectives. Combined with the sentence-level alignment method of previous work, our method further improves its performance. These results confirm the importance of careful alignment in word-level details.
Morphological analysis (MA) and lexical normalization (LN) are both important tasks for Japanese user-generated text (UGT). To evaluate and compare different MA/LN systems, we have constructed a publicly available Japanese UGT corpus. Our corpus comprises 929 sentences annotated with morphological and normalization information, along with category information we classified for frequent UGT-specific phenomena. Experiments on the corpus demonstrated the low performance of existing MA/LN methods for non-general words and non-standard forms, indicating that the corpus would be a challenging benchmark for further research on UGT.
Abstract Meaning Representation (AMR) is a sentence-level meaning representation based on predicate argument structure. One of the challenges we find in AMR parsing is to capture the structure of complex sentences which expresses the relation between predicates. Knowing the core part of the sentence structure in advance may be beneficial in such a task. In this paper, we present a list of dependency patterns for English complex sentence constructions designed for AMR parsing. With a dedicated pattern matcher, all occurrences of complex sentence constructions are retrieved from an input sentence. While some of the subordinators have semantic ambiguities, we deal with this problem through training classification models on data derived from AMR and Wikipedia corpus, establishing a new baseline for future works. The developed complex sentence patterns and the corresponding AMR descriptions will be made public.
Lexical normalization, in addition to word segmentation and part-of-speech tagging, is a fundamental task for Japanese user-generated text processing. In this paper, we propose a text editing model to solve the three task jointly and methods of pseudo-labeled data generation to overcome the problem of data deficiency. Our experiments showed that the proposed model achieved better normalization performance when trained on more diverse pseudo-labeled data.
We propose a simple method for nominal coordination boundary identification. As the main strength of our method, it can identify the coordination boundaries without training on labeled data, and can be applied even if coordination structure annotations are not available. Our system employs pre-trained word embeddings to measure the similarities of words and detects the span of coordination, assuming that conjuncts share syntactic and semantic similarities. We demonstrate that our method yields good results in identifying coordinated noun phrases in the GENIA corpus and is comparable to a recent supervised method for the case when the coordinator conjoins simple noun phrases.
Measuring domain relevance of data and identifying or selecting well-fit domain data for machine translation (MT) is a well-studied topic, but denoising is not yet. Denoising is concerned with a different type of data quality and tries to reduce the negative impact of data noise on MT training, in particular, neural MT (NMT) training. This paper generalizes methods for measuring and selecting data for domain MT and applies them to denoising NMT training. The proposed approach uses trusted data and a denoising curriculum realized by online data selection. Intrinsic and extrinsic evaluations of the approach show its significant effectiveness for NMT to train on data with severe noise.
In this paper, we propose a new decoding method for phrase-based statistical machine translation which directly uses multiple preordering candidates as a graph structure. Compared with previous phrase-based decoding methods, our method is based on a simple left-to-right dynamic programming in which no decoding-time reordering is performed. As a result, its runtime is very fast and implementing the algorithm becomes easy. Our system does not depend on specific preordering methods as long as they output multiple preordering candidates, and it is trivial to employ existing preordering methods into our system. In our experiments for translating diverse 11 languages into English, the proposed method outperforms conventional phrase-based decoder in terms of translation qualities under comparable or faster decoding time.
This paper describes NICT’s participation in the IWSLT 2014 evaluation campaign for the TED Chinese-English translation shared-task. Our approach used a combination of phrase-based and hierarchical statistical machine translation (SMT) systems. Our focus was in several areas, specifically system combination, word alignment, and various language modeling techniques including the use of neural network joint models. Our experiments on the test set from the 2013 shared task, showed that an improvement in BLEU score can be gained in translation performance through all of these techniques, with the largest improvements coming from using large data sizes to train the language model.
This paper describes NICT’s participation in the IWSLT 2010 evaluation campaign for the DIALOG translation (Chinese-English) and the BTEC (French-English) translation shared-tasks. For the DIALOG translation, the main challenge to this task is applying context information during translation. Context information can be used to decide on word choice and also to replace missing information during translation. We applied discriminative reranking using contextual information as additional features. In order to provide more choices for re-ranking, we generated n-best lists from multiple phrase-based statistical machine translation systems that varied in the type of Chinese word segmentation schemes used. We also built a model that merged the phrase tables generated by the different segmentation schemes. Furthermore, we used a lattice-based system combination model to combine the output from different systems. A combination of all of these systems was used to produce the n-best lists for re-ranking. For the BTEC task, a general approach that used latticebased system combination of two systems, a standard phrasebased system and a hierarchical phrase-based system, was taken. We also tried to process some unknown words by replacing them with the same words but different inflections that are known to the system.
Minimum error rate training (MERT) is a widely used learning method for statistical machine translation. In this paper, we present a SVM-based training method to enhance generalization ability. We extend MERT optimization by maximizing the margin between the reference and incorrect translations under the L2-norm prior to avoid overfitting problem. Translation accuracy obtained by our proposed methods is more stable in various conditions than that obtained by MERT. Our experimental results on the French-English WMT08 shared task show that degrade of our proposed methods is smaller than that of MERT in case of small training data or out-of-domain test data.
The NTT Statistical Machine Translation System consists of two primary components: a statistical machine translation decoder and a reranker. The decoder generates k-best translation canditates using a hierarchical phrase-based translation based on synchronous context-free grammar. The decoder employs a linear feature combination among several real-valued scores on translation and language models. The reranker reorders the k-best translation candidates using Ranking SVMs with a large number of sparse features. This paper describes the two components and presents the results for the evaluation campaign of IWSLT 2008.
The NTT Statistical Machine Translation System employs a large number of feature functions. First, k-best translation candidates are generated by an efficient decoding method of hierarchical phrase-based translation. Second, the k-best translations are reranked. In both steps, sparse binary features — of the order of millions — are integrated during the search. This paper gives the details of the two steps and shows the results for the Evaluation campaign of the International Workshop on Spoken Language Translation (IWSLT) 2007.
This paper presents a decoder for statistical machine translation that can take advantage of the example-based machine translation framework. The decoder presented here is based on the greedy approach to the decoding problem, but the search is initiated from a similar translation extracted from a bilingual corpus. The experiments on multilingual translations showed that the proposed method was far superior to a word-by-word generation beam search algorithm.