Essay writing is a skill commonly taught and practised in schools. The ability to write a fluent and persuasive essay is often a major component of formal assessment. In natural language processing and education technology we may work with essays in their final form, for example to carry out automated assessment or grammatical error correction. In this work we collect and analyse data representing the essay writing process from start to finish, by recording every key stroke from multiple writers participating in our study. We describe our data collection methodology, the characteristics of the resulting dataset, and the assignment of proficiency levels to the texts. We discuss the ways the keystroke data can be used – for instance seeking to identify patterns in the keystrokes which might act as features in automated assessment or may enable further advancements in writing assistance – and the writing support technology which could be built with such information, if we can detect when writers are struggling to compose a section of their essay and offer appropriate intervention. We frame this work in the context of English language learning, but we note that keystroke logging is relevant more broadly to text authoring scenarios as well as cognitive or linguistic analyses of the writing process.
Cultural institutions such as galleries, libraries, archives and museums continue to make commitments to large scale digitization of collections. An ongoing challenge is how to increase discovery and access through structured data and the semantic web. In this paper we describe a method for using computer vision algorithms that automatically detect regions of “stuff” — such as the sky, water, and roads — to produce rich and accurate structured data triples for describing the content of historic photography. We apply our method to a collection of 1610 documentary photographs produced in the 1930s and 1940 by the FSA-OWI division of the U.S. federal government. Manual verification of the extracted annotations yields an accuracy rate of 97.5%, compared to 70.7% for relations extracted from object detection and 31.5% for automatically generated captions. Our method also produces a rich set of features, providing more unique labels (1170) than either the captions (1040) or object detection (178) methods. We conclude by describing directions for a linguistically-focused ontology of region categories that can better enrich historical image data. Open source code and the extracted metadata from our corpus are made available as external resources.
Word choice is dependent on the cultural context of writers and their subjects. Different words are used to describe similar actions, objects, and features based on factors such as class, race, gender, geography and political affinity. Exploratory techniques based on locating and counting words may, therefore, lead to conclusions that reinforce culturally inflected boundaries. We offer a new method, the DualNeighbors algorithm, for linking thematically similar documents both within and across discursive and linguistic barriers to reveal cross-cultural connections. Qualitative and quantitative evaluations of this technique are shown as applied to two cultural datasets of interest to researchers across the humanities and social sciences. An open-source implementation of the DualNeighbors algorithm is provided to assist in its application.