Taylor Cassidy


2016

pdf bib
Liberal Event Extraction and Event Schema Induction
Lifu Huang | Taylor Cassidy | Xiaocheng Feng | Heng Ji | Clare R. Voss | Jiawei Han | Avirup Sil
Proceedings of the 54th Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers)

pdf bib
Cross-media Event Extraction and Recommendation
Di Lu | Clare Voss | Fangbo Tao | Xiang Ren | Rachel Guan | Rostyslav Korolov | Tongtao Zhang | Dongang Wang | Hongzhi Li | Taylor Cassidy | Heng Ji | Shih-fu Chang | Jiawei Han | William Wallace | James Hendler | Mei Si | Lance Kaplan
Proceedings of the 2016 Conference of the North American Chapter of the Association for Computational Linguistics: Demonstrations

2015

pdf bib
Unsupervised Entity Linking with Abstract Meaning Representation
Xiaoman Pan | Taylor Cassidy | Ulf Hermjakob | Heng Ji | Kevin Knight
Proceedings of the 2015 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies

2014

pdf bib
Dense Event Ordering with a Multi-Pass Architecture
Nathanael Chambers | Taylor Cassidy | Bill McDowell | Steven Bethard
Transactions of the Association for Computational Linguistics, Volume 2

The past 10 years of event ordering research has focused on learning partial orderings over document events and time expressions. The most popular corpus, the TimeBank, contains a small subset of the possible ordering graph. Many evaluations follow suit by only testing certain pairs of events (e.g., only main verbs of neighboring sentences). This has led most research to focus on specific learners for partial labelings. This paper attempts to nudge the discussion from identifying some relations to all relations. We present new experiments on strongly connected event graphs that contain ∼10 times more relations per document than the TimeBank. We also describe a shift away from the single learner to a sieve-based architecture that naturally blends multiple learners into a precision-ranked cascade of sieves. Each sieve adds labels to the event graph one at a time, and earlier sieves inform later ones through transitive closure. This paper thus describes innovations in both approach and task. We experiment on the densest event graphs to date and show a 14% gain over state-of-the-art.

pdf bib
Collaborative Exploration in Human-Robot Teams: What’s in their Corpora of Dialog, Video, & LIDAR Messages?
Clare Voss | Taylor Cassidy | Douglas Summers-Stay
Proceedings of the EACL 2014 Workshop on Dialogue in Motion

pdf bib
Joint Navigation in Commander/Robot Teams: Dialog & Task Performance When Vision is Bandwidth-Limited
Douglas Summers-Stay | Taylor Cassidy | Clare Voss
Proceedings of the Third Workshop on Vision and Language

pdf bib
Analysis and Refinement of Temporal Relation Aggregation
Taylor Cassidy | Heng Ji
Proceedings of COLING 2014, the 25th International Conference on Computational Linguistics: Technical Papers

pdf bib
The Wisdom of Minority: Unsupervised Slot Filling Validation based on Multi-dimensional Truth-Finding
Dian Yu | Hongzhao Huang | Taylor Cassidy | Heng Ji | Chi Wang | Shi Zhi | Jiawei Han | Clare Voss | Malik Magdon-Ismail
Proceedings of COLING 2014, the 25th International Conference on Computational Linguistics: Technical Papers

pdf bib
An Annotation Framework for Dense Event Ordering
Taylor Cassidy | Bill McDowell | Nathanael Chambers | Steven Bethard
Proceedings of the 52nd Annual Meeting of the Association for Computational Linguistics (Volume 2: Short Papers)

pdf bib
Wikification and Beyond: The Challenges of Entity and Concept Grounding
Dan Roth | Heng Ji | Ming-Wei Chang | Taylor Cassidy
Proceedings of the 52nd Annual Meeting of the Association for Computational Linguistics: Tutorials

2012

pdf bib
Analysis and Enhancement of Wikification for Microblogs with Context Expansion
Taylor Cassidy | Heng Ji | Lev-Arie Ratinov | Arkaitz Zubiaga | Hongzhao Huang
Proceedings of COLING 2012