Most language models currently available are prone to self-contradiction during dialogues. To mitigate this issue, this study explores a novel contradictory dialogue processing task that aims to detect and modify contradictory statements in a conversation. This task is inspired by research on context faithfulness and dialogue comprehension, which have demonstrated that the detection and understanding of contradictions often necessitate detailed explanations. We develop a dataset comprising contradictory dialogues, in which one side of the conversation contradicts itself. Each dialogue is accompanied by an explanatory label that highlights the location and details of the contradiction. With this dataset, we present a Red Teaming framework for contradictory dialogue processing. The framework detects and attempts to explain the dialogue, then modifies the existing contradictory content using the explanation. Our experiments demonstrate that the framework improves the ability to detect contradictory dialogues and provides valid explanations. Additionally, it showcases distinct capabilities for modifying such dialogues. Our study highlights the importance of the logical inconsistency problem in conversational AI.
As daily reliance on large language models (LLMs) grows, assessing their generation quality is crucial to understanding how they might impact on our communications. This paper investigates the capability of LLMs in storytelling, focusing on narrative development and plot progression. We introduce a novel computational framework to analyze narratives through three discourse-level aspects: i) story arcs, ii) turning points, and iii) affective dimensions, including arousal and valence. By leveraging expert and automatic annotations, we uncover significant discrepancies between the LLM- and human- written stories. While human-written stories are suspenseful, arousing, and diverse in narrative structures, LLM stories are homogeneously positive and lack tension. Next, we measure narrative reasoning skills as a precursor to generative capacities, concluding that most LLMs fall short of human abilities in discourse understanding. Finally, we show that explicit integration of aforementioned discourse features can enhance storytelling, as is demonstrated by over 40% improvement in neural storytelling in terms of diversity, suspense, and arousal. Such advances promise to facilitate greater and more natural roles LLMs in human communication.
Recent advancements in integrating external tools with Large Language Models (LLMs) have opened new frontiers, with applications in mathematical reasoning, code generators, and smart assistants. However, existing methods, relying on simple one-time retrieval strategies, fall short on effectively and accurately shortlisting relevant tools. This paper introduces a novel PLUTO (Planning, Learning, and Understanding for TOols) approach, encompassing “Plan-and-Retrieve (P&R)” and “Edit-and-Ground (E&G)” paradigms. The P&R paradigm consists of a neural retrieval module for shortlisting relevant tools and an LLM-based query planner that decomposes complex queries into actionable tasks, enhancing the effectiveness of tool utilization. The E&G paradigm utilizes LLMs to enrich tool descriptions based on user scenarios, bridging the gap between user queries and tool functionalities. Experiment results demonstrate that these paradigms significantly improve the recall and NDCG in tool retrieval tasks, significantly surpassing current state-of-the-art models.
Storytelling’s captivating potential makes it a fascinating research area, with implications for entertainment, education, therapy, and cognitive studies. In this paper, we propose Affective Story Generator (AffGen) for generating interesting narratives. AffGen introduces ‘intriguing twists’ in narratives by employing two novel techniques—Dynamic Beam Sizing and Affective Reranking. Dynamic Beam Sizing encourages less predictable, more captivating word choices using a contextual multi-arm bandit model. Affective Reranking prioritizes sentence candidates based on affect intensity. Our empirical evaluations, both automatic and human, demonstrate AffGen’s superior performance over existing baselines in generating affectively charged and interesting narratives. Our ablation study and analysis provide insights into the strengths and weaknesses of AffGen.
A common method for extractive multi-document news summarization is to re-formulate it as a single-document summarization problem by concatenating all documents as a single meta-document. However, this method neglects the relative importance of documents. We propose a simple approach to reorder the documents according to their relative importance before concatenating and summarizing them. The reordering makes the salient content easier to learn by the summarization model. Experiments show that our approach outperforms previous state-of-the-art methods with more complex architectures.
Pre-trained models (PTMs) have lead to great improvements in natural language generation (NLG). However, it is still unclear how much commonsense knowledge they possess. With the goal of evaluating commonsense knowledge of NLG models, recent work has proposed the problem of generative commonsense reasoning, e.g., to compose a logical sentence given a set of unordered concepts. Existing approaches to this problem hypothesize that PTMs lack sufficient parametric knowledge for this task, which can be overcome by introducing external knowledge or task-specific pre-training objectives. Different from this trend, we argue that PTM’s inherent ability for generative commonsense reasoning is underestimated due to the order-agnostic property of its input. In particular, we hypothesize that the order of the input concepts can affect the PTM’s ability to utilize its commonsense knowledge. To this end, we propose a pre-ordering approach to elaborately manipulate the order of the given concepts before generation. Experiments show that our approach can outperform the more sophisticated models that have access to a lot of external data and resources.
Pre-trained language models learn socially harmful biases from their training corpora, and may repeat these biases when used for generation. We study gender biases associated with the protagonist in model-generated stories. Such biases may be expressed either explicitly (“women can’t park”) or implicitly (e.g. an unsolicited male character guides her into a parking space). We focus on implicit biases, and use a commonsense reasoning engine to uncover them. Specifically, we infer and analyze the protagonist’s motivations, attributes, mental states, and implications on others. Our findings regarding implicit biases are in line with prior work that studied explicit biases, for example showing that female characters’ portrayal is centered around appearance, while male figures’ focus on intellect.