Teresa Botschen


2018

pdf bib
Frame- and Entity-Based Knowledge for Common-Sense Argumentative Reasoning
Teresa Botschen | Daniil Sorokin | Iryna Gurevych
Proceedings of the 5th Workshop on Argument Mining

Common-sense argumentative reasoning is a challenging task that requires holistic understanding of the argumentation where external knowledge about the world is hypothesized to play a key role. We explore the idea of using event knowledge about prototypical situations from FrameNet and fact knowledge about concrete entities from Wikidata to solve the task. We find that both resources can contribute to an improvement over the non-enriched approach and point out two persisting challenges: first, integration of many annotations of the same type, and second, fusion of complementary annotations. After our explorations, we question the key role of external world knowledge with respect to the argumentative reasoning task and rather point towards a logic-based analysis of the chain of reasoning.

pdf bib
Multimodal Grounding for Language Processing
Lisa Beinborn | Teresa Botschen | Iryna Gurevych
Proceedings of the 27th International Conference on Computational Linguistics

This survey discusses how recent developments in multimodal processing facilitate conceptual grounding of language. We categorize the information flow in multimodal processing with respect to cognitive models of human information processing and analyze different methods for combining multimodal representations. Based on this methodological inventory, we discuss the benefit of multimodal grounding for a variety of language processing tasks and the challenges that arise. We particularly focus on multimodal grounding of verbs which play a crucial role for the compositional power of language.

pdf bib
Multimodal Frame Identification with Multilingual Evaluation
Teresa Botschen | Iryna Gurevych | Jan-Christoph Klie | Hatem Mousselly-Sergieh | Stefan Roth
Proceedings of the 2018 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, Volume 1 (Long Papers)

An essential step in FrameNet Semantic Role Labeling is the Frame Identification (FrameId) task, which aims at disambiguating a situation around a predicate. Whilst current FrameId methods rely on textual representations only, we hypothesize that FrameId can profit from a richer understanding of the situational context. Such contextual information can be obtained from common sense knowledge, which is more present in images than in text. In this paper, we extend a state-of-the-art FrameId system in order to effectively leverage multimodal representations. We conduct a comprehensive evaluation on the English FrameNet and its German counterpart SALSA. Our analysis shows that for the German data, textual representations are still competitive with multimodal ones. However on the English data, our multimodal FrameId approach outperforms its unimodal counterpart, setting a new state of the art. Its benefits are particularly apparent in dealing with ambiguous and rare instances, the main source of errors of current systems. For research purposes, we release (a) the implementation of our system, (b) our evaluation splits for SALSA 2.0, and (c) the embeddings for synsets and IMAGINED words.

pdf bib
A Multimodal Translation-Based Approach for Knowledge Graph Representation Learning
Hatem Mousselly-Sergieh | Teresa Botschen | Iryna Gurevych | Stefan Roth
Proceedings of the Seventh Joint Conference on Lexical and Computational Semantics

Current methods for knowledge graph (KG) representation learning focus solely on the structure of the KG and do not exploit any kind of external information, such as visual and linguistic information corresponding to the KG entities. In this paper, we propose a multimodal translation-based approach that defines the energy of a KG triple as the sum of sub-energy functions that leverage both multimodal (visual and linguistic) and structural KG representations. Next, a ranking-based loss is minimized using a simple neural network architecture. Moreover, we introduce a new large-scale dataset for multimodal KG representation learning. We compared the performance of our approach to other baselines on two standard tasks, namely knowledge graph completion and triple classification, using our as well as the WN9-IMG dataset. The results demonstrate that our approach outperforms all baselines on both tasks and datasets.

2017

pdf bib
Prediction of Frame-to-Frame Relations in the FrameNet Hierarchy with Frame Embeddings
Teresa Botschen | Hatem Mousselly-Sergieh | Iryna Gurevych
Proceedings of the 2nd Workshop on Representation Learning for NLP

Automatic completion of frame-to-frame (F2F) relations in the FrameNet (FN) hierarchy has received little attention, although they incorporate meta-level commonsense knowledge and are used in downstream approaches. We address the problem of sparsely annotated F2F relations. First, we examine whether the manually defined F2F relations emerge from text by learning text-based frame embeddings. Our analysis reveals insights about the difficulty of reconstructing F2F relations purely from text. Second, we present different systems for predicting F2F relations; our best-performing one uses the FN hierarchy to train on and to ground embeddings in. A comparison of systems and embeddings exposes the crucial influence of knowledge-based embeddings to a system’s performance in predicting F2F relations.

pdf bib
Learning to Score System Summaries for Better Content Selection Evaluation.
Maxime Peyrard | Teresa Botschen | Iryna Gurevych
Proceedings of the Workshop on New Frontiers in Summarization

The evaluation of summaries is a challenging but crucial task of the summarization field. In this work, we propose to learn an automatic scoring metric based on the human judgements available as part of classical summarization datasets like TAC-2008 and TAC-2009. Any existing automatic scoring metrics can be included as features, the model learns the combination exhibiting the best correlation with human judgments. The reliability of the new metric is tested in a further manual evaluation where we ask humans to evaluate summaries covering the whole scoring spectrum of the metric. We release the trained metric as an open-source tool.