Much of the success of modern language models depends on finding a suitable prompt to instruct the model. Until now, it has been largely unknown how variations in the linguistic expression of prompts affect these models. This study systematically and empirically evaluates which linguistic features influence models through paraphrase types, i.e., different linguistic changes at particular positions. We measure behavioral changes for five models across 120 tasks and six families of paraphrases (i.e., morphology, syntax, lexicon, lexico-syntax, discourse, and others). We also control for other prompt engineering factors (e.g., prompt length, lexical diversity, and proximity to training data). Our results show a potential for language models to improve tasks when their prompts are adapted in specific paraphrase types (e.g., 6.7% median gain in Mixtral 8x7B; 5.5% in LLaMA 3 8B). In particular, changes in morphology and lexicon, i.e., the vocabulary used, showed promise in improving prompts. These findings contribute to developing more robust language models capable of handling variability in linguistic expression.
Meeting summarization is crucial in digital communication, but existing solutions struggle with salience identification to generate personalized, workable summaries, and context understanding to fully comprehend the meetings’ content.Previous attempts to address these issues by considering related supplementary resources (e.g., presentation slides) alongside transcripts are hindered by models’ limited context sizes and handling the additional complexities of the multi-source tasks, such as identifying relevant information in additional files and seamlessly aligning it with the meeting content.This work explores multi-source meeting summarization considering supplementary materials through a three-stage large language model approach: identifying transcript passages needing additional context, inferring relevant details from supplementary materials and inserting them into the transcript, and generating a summary from this enriched transcript.Our multi-source approach enhances model understanding, increasing summary relevance by ~9% and producing more content-rich outputs.We introduce a personalization protocol that extracts participant characteristics and tailors summaries accordingly, improving informativeness by ~10%.This work further provides insights on performance-cost trade-offs across four leading model families, including edge-device capable options.Our approach can be extended to similar complex generative tasks benefitting from additional resources and personalization, such as dialogue systems and action planning.
Meeting summarization has become a critical task considering the increase in online interactions. Despite new techniques being proposed regularly, the evaluation of meeting summarization techniques relies on metrics not tailored to capture meeting-specific errors, leading to ineffective assessment. This paper explores what established automatic metrics capture and the errors they mask by correlating metric scores with human evaluations across a comprehensive error taxonomy. We start by reviewing the literature on English meeting summarization to identify key challenges, such as speaker dynamics and contextual turn-taking, and error types, including missing information and linguistic inaccuracy, concepts previously loosely defined in the field. We then examine the relationship between these challenges and errors using human annotated transcripts and summaries from encoder-decoder-based and autoregressive Transformer models on the QMSum dataset. Experiments reveal that different model architectures respond variably to the challenges, resulting in distinct links between challenges and errors. Current established metrics struggle to capture the observable errors, showing weak to moderate correlations, with a third of the correlations indicating error masking. Only a subset of metrics accurately reacts to specific errors, while most correlations show either unresponsiveness or failure to reflect the error’s impact on summary quality.
Media bias detection poses a complex, multifaceted problem traditionally tackled using single-task models and small in-domain datasets, consequently lacking generalizability. To address this, we introduce MAGPIE, a large-scale multi-task pre-training approach explicitly tailored for media bias detection. To enable large-scale pre-training, we construct Large Bias Mixture (LBM), a compilation of 59 bias-related tasks. MAGPIE outperforms previous approaches in media bias detection on the Bias Annotation By Experts (BABE) dataset, with a relative improvement of 3.3% F1-score. Furthermore, using a RoBERTa encoder, we show that MAGPIE needs only 15% of fine-tuning steps compared to single-task approaches. We provide insight into task learning interference and show that sentiment analysis and emotion detection help learning of all other tasks, and scaling the number of tasks leads to the best results. MAGPIE confirms that MTL is a promising approach for addressing media bias detection, enhancing the accuracy and efficiency of existing models. Furthermore, LBM is the first available resource collection focused on media bias MTL.
We present CiteAssist, a system to automate the generation of BibTeX entries for preprints, streamlining the process of bibliographic annotation. Our system extracts metadata, such as author names, titles, publication dates, and keywords, to create standardized annotations within the document. CiteAssist automatically attaches the BibTeX citation to the end of a PDF and links it on the first page of the document so other researchers gain immediate access to the correct citation of the article. This method promotes platform flexibility by ensuring that annotations remain accessible regardless of the repository used to publish or access the preprint. The annotations remain available even if the preprint is viewed externally to CiteAssist. Additionally, the system adds relevant related papers based on extracted keywords to the preprint, providing researchers with additional publications besides those in related work for further reading. Researchers can enhance their preprints organization and reference management workflows through a free and publicly available web interface.
Recent advances in deep learning methods for natural language processing (NLP) have created new business opportunities and made NLP research critical for industry development. As one of the big players in the field of NLP, together with governments and universities, it is important to track the influence of industry on research. In this study, we seek to quantify and characterize industry presence in the NLP community over time. Using a corpus with comprehensive metadata of 78,187 NLP publications and 701 resumes of NLP publication authors, we explore the industry presence in the field since the early 90s. We find that industry presence among NLP authors has been steady before a steep increase over the past five years (180% growth from 2017 to 2022). A few companies account for most of the publications and provide funding to academic researchers through grants and internships. Our study shows that the presence and impact of the industry on natural language processing research are significant and fast-growing. This work calls for increased transparency of industry influence in the field.
Current approaches in paraphrase generation and detection heavily rely on a single general similarity score, ignoring the intricate linguistic properties of language. This paper introduces two new tasks to address this shortcoming by considering paraphrase types - specific linguistic perturbations at particular text positions. We name these tasks Paraphrase Type Generation and Paraphrase Type Detection. Our results suggest that while current techniques perform well in a binary classification scenario, i.e., paraphrased or not, the inclusion of fine-grained paraphrase types poses a significant challenge. While most approaches are good at generating and detecting general semantic similar content, they fail to understand the intrinsic linguistic variables they manipulate. Models trained in generating and identifying paraphrase types also show improvements in tasks without them. In addition, scaling these models further improves their ability to understand paraphrase types. We believe paraphrase types can unlock a new paradigm for developing paraphrase models and solving tasks in the future.
Natural Language Processing (NLP) is poised to substantially influence the world. However, significant progress comes hand-in-hand with substantial risks. Addressing them requires broad engagement with various fields of study. Yet, little empirical work examines the state of such engagement (past or current). In this paper, we quantify the degree of influence between 23 fields of study and NLP (on each other). We analyzed ~77k NLP papers, ~3.1m citations from NLP papers to other papers, and ~1.8m citations from other papers to NLP papers. We show that, unlike most fields, the cross-field engagement of NLP, measured by our proposed Citation Field Diversity Index (CFDI), has declined from 0.58 in 1980 to 0.31 in 2022 (an all-time low). In addition, we find that NLP has grown more insular—citing increasingly more NLP papers and having fewer papers that act as bridges between fields. NLP citations are dominated by computer science; Less than 8% of NLP citations are to linguistics, and less than 3% are to math and psychology. These findings underscore NLP’s urgent need to reflect on its engagement with various fields.
The recent success of large language models for text generation poses a severe threat to academic integrity, as plagiarists can generate realistic paraphrases indistinguishable from original work.However, the role of large autoregressive models in generating machine-paraphrased plagiarism and their detection is still incipient in the literature.This work explores T5 and GPT3 for machine-paraphrase generation on scientific articles from arXiv, student theses, and Wikipedia.We evaluate the detection performance of six automated solutions and one commercial plagiarism detection software and perform a human study with 105 participants regarding their detection performance and the quality of generated examples.Our results suggest that large language models can rewrite text humans have difficulty identifying as machine-paraphrased (53% mean acc.).Human experts rate the quality of paraphrases generated by GPT-3 as high as original texts (clarity 4.0/5, fluency 4.2/5, coherence 3.8/5).The best-performing detection model (GPT-3) achieves 66% F1-score in detecting paraphrases.We make our code, data, and findings publicly available to facilitate the development of detection solutions.
Despite the recent success of multi-task learning and pre-finetuning for natural language understanding, few works have studied the effects of task families on abstractive text summarization. Task families are a form of task grouping during the pre-finetuning stage to learn common skills, such as reading comprehension. To close this gap, we analyze the influence of multi-task learning strategies using task families for the English abstractive text summarization task. We group tasks into one of three strategies, i.e., sequential, simultaneous, and continual multi-task learning, and evaluate trained models through two downstream tasks. We find that certain combinations of task families (e.g., advanced reading comprehension and natural language inference) positively impact downstream performance. Further, we find that choice and combinations of task families influence downstream performance more than the training scheme, supporting the use of task families for abstractive text
DBLP is the largest open-access repository of scientific articles on computer science and provides metadata associated with publications, authors, and venues. We retrieved more than 6 million publications from DBLP and extracted pertinent metadata (e.g., abstracts, author affiliations, citations) from the publication texts to create the DBLP Discovery Dataset (D3). D3 can be used to identify trends in research activity, productivity, focus, bias, accessibility, and impact of computer science research. We present an initial analysis focused on the volume of computer science research (e.g., number of papers, authors, research activity), trends in topics of interest, and citation patterns. Our findings show that computer science is a growing research field (15% annually), with an active and collaborative researcher community. While papers in recent years present more bibliographical entries in comparison to previous decades, the average number of citations has been declining. Investigating papers’ abstracts reveals that recent topic trends are clearly reflected in D3. Finally, we list further applications of D3 and pose supplemental research questions. The D3 dataset, our findings, and source code are publicly available for research purposes.
Media coverage has a substantial effect on the public perception of events. Nevertheless, media outlets are often biased. One way to bias news articles is by altering the word choice. The automatic identification of bias by word choice is challenging, primarily due to the lack of a gold standard data set and high context dependencies. This paper presents BABE, a robust and diverse data set created by trained experts, for media bias research. We also analyze why expert labeling is essential within this domain. Our data set offers better annotation quality and higher inter-annotator agreement than existing work. It consists of 3,700 sentences balanced among topics and outlets, containing media bias labels on the word and sentence level. Based on our data, we also introduce a way to detect bias-inducing sentences in news articles automatically. Our best performing BERT-based model is pre-trained on a larger corpus consisting of distant labels. Fine-tuning and evaluating the model on our proposed supervised data set, we achieve a macro F1-score of 0.804, outperforming existing methods.
Traditional document similarity measures provide a coarse-grained distinction between similar and dissimilar documents. Typically, they do not consider in what aspects two documents are similar. This limits the granularity of applications like recommender systems that rely on document similarity. In this paper, we extend similarity with aspect information by performing a pairwise document classification task. We evaluate our aspect-based document similarity approach for research papers. Paper citations indicate the aspect-based similarity, i.e., the title of a section in which a citation occurs acts as a label for the pair of citing and cited paper. We apply a series of Transformer models such as RoBERTa, ELECTRA, XLNet, and BERT variations and compare them to an LSTM baseline. We perform our experiments on two newly constructed datasets of 172,073 research paper pairs from the ACL Anthology and CORD-19 corpus. According to our results, SciBERT is the best performing system with F1-scores of up to 0.83. A qualitative analysis validates our quantitative results and indicates that aspect-based document similarity indeed leads to more fine-grained recommendations.
The meaning of a sentence in a document is more easily determined if its constituent words exhibit cohesion with respect to their individual semantics. This paper explores the degree of cohesion among a document’s words using lexical chains as a semantic representation of its meaning. Using a combination of diverse types of lexical chains, we develop a text document representation that can be used for semantic document retrieval. For our approach, we develop two kinds of lexical chains: (i) a multilevel flexible chain representation of the extracted semantic values, which is used to construct a fixed segmentation of these chains and constituent words in the text; and (ii) a fixed lexical chain obtained directly from the initial semantic representation from a document. The extraction and processing of concepts is performed using WordNet as a lexical database. The segmentation then uses these lexical chains to model the dispersion of concepts in the document. Representing each document as a high-dimensional vector, we use spherical k-means clustering to demonstrate that our approach performs better than previous techniques.