Terry Yue Zhuo


pdf bib
ViLPAct: A Benchmark for Compositional Generalization on Multimodal Human Activities
Terry Yue Zhuo | Yaqing Liao | Yuecheng Lei | Lizhen Qu | Gerard de Melo | Xiaojun Chang | Yazhou Ren | Zenglin Xu
Findings of the Association for Computational Linguistics: EACL 2023

We introduce ViLPAct, a novel vision-language benchmark for human activity planning. It is designed for a task where embodied AI agents can reason and forecast future actions of humans based on video clips about their initial activities and intents in text. The dataset consists of 2.9k videos from Charades extended with intents via crowdsourcing, a multi-choice question test set, and four strong baselines. One of the baselines implements a neurosymbolic approach based on a multi-modal knowledge base (MKB), while the other ones are deep generative models adapted from recent state-of-the-art (SOTA) methods. According to our extensive experiments, the key challenges are compositional generalization and effective use of information from both modalities.

pdf bib
Rethinking Round-Trip Translation for Machine Translation Evaluation
Terry Yue Zhuo | Qiongkai Xu | Xuanli He | Trevor Cohn
Findings of the Association for Computational Linguistics: ACL 2023

Automatic evaluation methods for translation often require model training, and thus the availability of parallel corpora limits their applicability to low-resource settings. Round-trip translation is a potential workaround, which can reframe bilingual evaluation into a much simpler monolingual task. Early results from the era of statistical machine translation (SMT) raised fundamental concerns about the utility of this approach, based on poor correlation with human translation quality judgments. In this paper, we revisit this technique with modern neural translation (NMT) and show that round-trip translation does allow for accurate automatic evaluation without the need for reference translations. These opposite findings can be explained through the copy mechanism in SMT that is absent in NMT. We demonstrate that round-trip translation benefits multiple machine translation evaluation tasks: i) predicting forward translation scores; ii) improving the performance of a quality estimation model; and iii) identifying adversarial competitors in shared tasks via cross-system verification.

pdf bib
FACTUAL: A Benchmark for Faithful and Consistent Textual Scene Graph Parsing
Zhuang Li | Yuyang Chai | Terry Yue Zhuo | Lizhen Qu | Gholamreza Haffari | Fei Li | Donghong Ji | Quan Hung Tran
Findings of the Association for Computational Linguistics: ACL 2023

Textual scene graph parsing has become increasingly important in various vision-language applications, including image caption evaluation and image retrieval. However, existing scene graph parsers that convert image captions into scene graphs often suffer from two types of errors. First, the generated scene graphs fail to capture the true semantics of the captions or the corresponding images, resulting in a lack of faithfulness. Second, the generated scene graphs have high inconsistency, with the same semantics represented by different annotations. To address these challenges, we propose a novel dataset, which involves re-annotating the captions in Visual Genome (VG) using a new intermediate representation called FACTUAL-MR. FACTUAL-MR can be directly converted into faithful and consistent scene graph annotations. Our experimental results clearly demonstrate that the parser trained on our dataset outperforms existing approaches in terms of faithfulness and consistency. This improvement leads to a significant performance boost in both image caption evaluation and zero-shot image retrieval tasks. Furthermore, we introduce a novel metric for measuring scene graph similarity, which, when combined with the improved scene graph parser, achieves state-of-the-art (SOTA) results on multiple benchmark datasets for the aforementioned tasks.

pdf bib
On Robustness of Prompt-based Semantic Parsing with Large Pre-trained Language Model: An Empirical Study on Codex
Terry Yue Zhuo | Zhuang Li | Yujin Huang | Fatemeh Shiri | Weiqing Wang | Gholamreza Haffari | Yuan-Fang Li
Proceedings of the 17th Conference of the European Chapter of the Association for Computational Linguistics

Semantic parsing is a technique aimed at constructing a structured representation of the meaning of a natural-language question. Recent advances in language models trained on code have shown superior performance in generating these representations compared to language models trained solely on natural language text. The existing fine-tuned neural semantic parsers are vulnerable to adversarial attacks on natural-language inputs. While it has been established that the robustness of smaller semantic parsers can be enhanced through adversarial training, this approach is not feasible for large language models in real-world scenarios, as it requires both substantial computational resources and expensive human annotation on in-domain semantic parsing data. This paper presents the first empirical study on the adversarial robustness of a prompt-based semantic parser based on CODEX, a stateof-the-art (SOTA) language model trained on code. Our results demonstrate that the large language model of code is vulnerable to carefully crafted adversarial examples. To overcome this challenge, we propose methods for enhancing robustness without requiring substantial amounts of labelled data or intensive computational resources.


pdf bib
Neural-Symbolic Commonsense Reasoner with Relation Predictors
Farhad Moghimifar | Lizhen Qu | Terry Yue Zhuo | Gholamreza Haffari | Mahsa Baktashmotlagh
Proceedings of the 59th Annual Meeting of the Association for Computational Linguistics and the 11th International Joint Conference on Natural Language Processing (Volume 2: Short Papers)

Commonsense reasoning aims to incorporate sets of commonsense facts, retrieved from Commonsense Knowledge Graphs (CKG), to draw conclusion about ordinary situations. The dynamic nature of commonsense knowledge postulates models capable of performing multi-hop reasoning over new situations. This feature also results in having large-scale sparse Knowledge Graphs, where such reasoning process is needed to predict relations between new events. However, existing approaches in this area are limited by considering CKGs as a limited set of facts, thus rendering them unfit for reasoning over new unseen situations and events. In this paper, we present a neural-symbolic reasoner, which is capable of reasoning over large-scale dynamic CKGs. The logic rules for reasoning over CKGs are learned during training by our model. In addition to providing interpretable explanation, the learned logic rules help to generalise prediction to newly introduced events. Experimental results on the task of link prediction on CKGs prove the effectiveness of our model by outperforming the state-of-the-art models.