Thang Pham


2024

pdf bib
PEEB: Part-based Image Classifiers with an Explainable and Editable Language Bottleneck
Thang Pham | Peijie Chen | Tin Nguyen | Seunghyun Yoon | Trung Bui | Anh Nguyen
Findings of the Association for Computational Linguistics: NAACL 2024

CLIP-based classifiers rely on the prompt containing a class name that is known to the text encoder. Therefore, they perform poorly on new classes or the classes whose names rarely appear on the Internet (e.g., scientific names of birds). For fine-grained classification, we propose PEEB – an explainable and editable classifier to (1) express the class name into a set of text descriptors that describe the visual parts of that class; and (2) match the embeddings of the detected parts to their textual descriptors in each class to compute a logit score for classification. In a zero-shot setting where the class names are unknown, PEEB outperforms CLIP by a huge margin (∼10× in top-1 accuracy). Compared to part-based classifiers, PEEB is not only the state-of-the-art (SOTA) on the supervised-learning setting (88.80% and 92.20% accuracy on CUB-200 and Stanford Dogs-120, respectively) but also the first to enable users to edit the text descriptors to form a new classifier without any re-training. Compared to concept bottleneck models, PEEB is also the SOTA in both zero-shot and supervised-learning settings.

2023

pdf bib
PiC: A Phrase-in-Context Dataset for Phrase Understanding and Semantic Search
Thang Pham | Seunghyun Yoon | Trung Bui | Anh Nguyen
Proceedings of the 17th Conference of the European Chapter of the Association for Computational Linguistics

While contextualized word embeddings have been a de-facto standard, learning contextualized phrase embeddings is less explored and being hindered by the lack of a human-annotated benchmark that tests machine understanding of phrase semantics given a context sentence or paragraph (instead of phrases alone). To fill this gap, we propose PiC—a dataset of ∼28K of noun phrases accompanied by their contextual Wikipedia pages and a suite of three tasks for training and evaluating phrase embeddings. Training on PiC improves ranking-models’ accuracy and remarkably pushes span selection (SS) models (i.e., predicting the start and end index of the target phrase) near human accuracy, which is 95% Exact Match (EM) on semantic search given a query phrase and a passage. Interestingly, we find evidence that such impressive performance is because the SS models learn to better capture the common meaning of a phrase regardless of its actual context. SotA models perform poorly in distinguishing two senses of the same phrase in two contexts (∼60% EM) and in estimating the similarity between two different phrases in the same context (∼70% EM).

2022

pdf bib
Double Trouble: How to not Explain a Text Classifier’s Decisions Using Counterfactuals Synthesized by Masked Language Models?
Thang Pham | Trung Bui | Long Mai | Anh Nguyen
Proceedings of the 2nd Conference of the Asia-Pacific Chapter of the Association for Computational Linguistics and the 12th International Joint Conference on Natural Language Processing (Volume 1: Long Papers)

A principle behind dozens of attribution methods is to take the prediction difference between before-and-after an input feature (here, a token) is removed as its attribution. A popular Input Marginalization (IM) method (Kim et al., 2020) uses BERT to replace a token, yielding more plausible counterfactuals. While Kim et al., 2020 reported that IM is effective, we find this conclusion not convincing as the Deletion-BERT metric used in their paper is biased towards IM. Importantly, this bias exists in Deletion-based metrics, including Insertion, Sufficiency, and Comprehensiveness. Furthermore, our rigorous evaluation using 6 metrics and 3 datasets finds no evidence that IM is better than a Leave-One-Out (LOO) baseline. We find two reasons why IM is not better than LOO: (1) deleting a single word from the input only marginally reduces a classifier’s accuracy; and (2) a highly predictable word is always given near-zero attribution, regardless of its true importance to the classifier. In contrast, making LIME samples more natural via BERT consistently improves LIME accuracy under several ROAR metrics.

2021

pdf bib
Out of Order: How important is the sequential order of words in a sentence in Natural Language Understanding tasks?
Thang Pham | Trung Bui | Long Mai | Anh Nguyen
Findings of the Association for Computational Linguistics: ACL-IJCNLP 2021