Théo Ryffel

Also published as: Theo Ryffel


2024

pdf bib
Generating Synthetic Documents with Clinical Keywords: A Privacy-Sensitive Methodology
Simon Meoni | Éric De la Clergerie | Théo Ryffel
Proceedings of the First Workshop on Patient-Oriented Language Processing (CL4Health) @ LREC-COLING 2024

Electronic Health Records store valuable patient-staff interaction data. These notes, often unstructured to save healthcare personnel time, can be challenging to analyze manually. Proprietary online Large Language Models have demonstrated impressive results in analyzing EHR notes. However, Clinical NLP faces unique challenges due to the sensitive and specialized nature of the data. Sending patient information via external APIs poses privacy risks, and hospitals require customized NLP systems to align with their unique practices. To address these challenges, developing customized LLMs using specific training datasets is crucial. To address this, we propose generating synthetic training data using keywords extracted without confidential information. Furthermore, we introduce a reward mechanism that iteratively refines the quality of synthetic documents. This involves scoring synthetic candidates against real clinical reports using a semantic textual similarity score and performing an aligment step to align the model with its best-scored utterances.

2023

pdf bib
Large Language Models as Instructors: A Study on Multilingual Clinical Entity Extraction
Simon Meoni | Eric De la Clergerie | Theo Ryffel
The 22nd Workshop on Biomedical Natural Language Processing and BioNLP Shared Tasks

In clinical and other specialized domains, data are scarce due to their confidential nature. This lack of data is a major problem when fine-tuning language models. Nevertheless, very large language models (LLMs) are promising for the medical domain but cannot be used directly in healthcare facilities due to data confidentiality issues. We explore an approach of annotating training data with LLMs to train smaller models more adapted to our problem. We show that this method yields promising results for information extraction tasks.

pdf bib
Annotation d’entités cliniques en utilisant les Larges Modèles de Langue
Simon Meoni | Théo Ryffel | Eric De La Clergerie
Actes de CORIA-TALN 2023. Actes de la 30e Conférence sur le Traitement Automatique des Langues Naturelles (TALN), volume 1 : travaux de recherche originaux -- articles longs

Dans le domaine clinique et dans d’autres domaines spécialisés, les données sont rares du fait de leur caractère confidentiel. Ce manque de données est un problème majeur lors du fine-tuning de modèles de langue.Par ailleurs, les modèles de langue de très grande taille (LLM) ont des performances prometteuses dans le domaine médical. Néanmoins, ils ne peuvent pas être utilisés directement dans les infrastructures des établissements de santé pour des raisons de confidentialité des données. Nous explorons une approche d’annotation des données d’entraînement avec des LLMs pour entraîner des modèles de moins grandes tailles mieux adaptés à notre problématique. Cette méthode donne des résultats prometteurs pour des tâches d’extraction d’information