Evaluating multi-document summarization (MDS) quality is difficult. This is especially true in the case of MDS for biomedical literature reviews, where models must synthesize contradicting evidence reported across different documents. Prior work has shown that rather than performing the task, models may exploit shortcuts that are difficult to detect using standard n-gram similarity metrics such as ROUGE. Better automated evaluation metrics are needed, but few resources exist to assess metrics when they are proposed. Therefore, we introduce a dataset of human-assessed summary quality facets and pairwise preferences to encourage and support the development of better automated evaluation methods for literature review MDS. We take advantage of community submissions to the Multi-document Summarization for Literature Review (MSLR) shared task to compile a diverse and representative sample of generated summaries. We analyze how automated summarization evaluation metrics correlate with lexical features of generated summaries, to other automated metrics including several we propose in this work, and to aspects of human-assessed summary quality. We find that not only do automated metrics fail to capture aspects of quality as assessed by humans, in many cases the system rankings produced by these metrics are anti-correlated with rankings according to human annotators.
Negation has been shown to be a major bottleneck for masked language models, such as BERT. However, whether this finding still holds for larger-sized auto-regressive language models (“LLMs”) has not been studied comprehensively. With the ever-increasing volume of research and applications of LLMs, we take a step back to evaluate the ability of current-generation LLMs to handle negation, a fundamental linguistic phenomenon that is central to language understanding. We evaluate different LLMs - including the open-source GPT-neo, GPT-3, and InstructGPT - against a wide range of negation benchmarks. Through systematic experimentation with varying model sizes and prompts, we show that LLMs have several limitations including insensitivity to the presence of negation, an inability to capture the lexical semantics of negation, and a failure to reason under negation.
Negation is poorly captured by current language models, although the extent of this problem is not widely understood. We introduce a natural language inference (NLI) test suite to enable probing the capabilities of NLP methods, with the aim of understanding sub-clausal negation. The test suite contains premise–hypothesis pairs where the premise contains sub-clausal negation and the hypothesis is constructed by making minimal modifications to the premise in order to reflect different possible interpretations. Aside from adopting standard NLI labels, our test suite is systematically constructed under a rigorous linguistic framework. It includes annotation of negation types and constructions grounded in linguistic theory, as well as the operations used to construct hypotheses. This facilitates fine-grained analysis of model performance. We conduct experiments using pre-trained language models to demonstrate that our test suite is more challenging than existing benchmarks focused on negation, and show how our annotation supports a deeper understanding of the current NLI capabilities in terms of negation and quantification.
In this paper, we present the first empirical study for Vietnamese disfluency detection. To conduct this study, we first create a disfluency detection dataset for Vietnamese, with manual annotations over two disfluency types. We then empirically perform experiments using strong baseline models, and find that: automatic Vietnamese word segmentation improves the disfluency detection performances of the baselines, and the highest performance results are obtained by fine-tuning pre-trained language models in which the monolingual model PhoBERT for Vietnamese does better than the multilingual model XLM-R.
In this paper we report the experiments performed for the submission to the Multidocument summarisation for Literature Review (MSLR) Shared Task. In particular, we adopt Primera model to the biomedical domain by placing global attention on important biomedical entities in several ways. We analyse the outputs of 23 resulting models and report some patterns related to the presence of additional global attention, number of training steps and the inputs configuration.
The current COVID-19 pandemic has lead to the creation of many corpora that facilitate NLP research and downstream applications to help fight the pandemic. However, most of these corpora are exclusively for English. As the pandemic is a global problem, it is worth creating COVID-19 related datasets for languages other than English. In this paper, we present the first manually-annotated COVID-19 domain-specific dataset for Vietnamese. Particularly, our dataset is annotated for the named entity recognition (NER) task with newly-defined entity types that can be used in other future epidemics. Our dataset also contains the largest number of entities compared to existing Vietnamese NER datasets. We empirically conduct experiments using strong baselines on our dataset, and find that: automatic Vietnamese word segmentation helps improve the NER results and the highest performances are obtained by fine-tuning pre-trained language models where the monolingual model PhoBERT for Vietnamese (Nguyen and Nguyen, 2020) produces higher results than the multilingual model XLM-R (Conneau et al., 2020). We publicly release our dataset at: https://github.com/VinAIResearch/PhoNER_COVID19