Thomas Dopierre


pdf bib
A Neural Few-Shot Text Classification Reality Check
Thomas Dopierre | Christophe Gravier | Wilfried Logerais
Proceedings of the 16th Conference of the European Chapter of the Association for Computational Linguistics: Main Volume

Modern classification models tend to struggle when the amount of annotated data is scarce. To overcome this issue, several neural few-shot classification models have emerged, yielding significant progress over time, both in Computer Vision and Natural Language Processing. In the latter, such models used to rely on fixed word embeddings, before the advent of transformers. Additionally, some models used in Computer Vision are yet to be tested in NLP applications. In this paper, we compare all these models, first adapting those made in the field of image processing to NLP, and second providing them access to transformers. We then test these models equipped with the same transformer-based encoder on the intent detection task, known for having a large amount of classes. Our results reveal that while methods perform almost equally on the ARSC dataset, this is not the case for the Intent Detection task, where most recent and supposedly best competitors perform worse than older and simpler ones (while all are are given access to transformers). We also show that a simple baseline is surprisingly strong. All the new developed models as well as the evaluation framework are made publicly available.

pdf bib
PROTAUGMENT: Unsupervised diverse short-texts paraphrasing for intent detection meta-learning
Thomas Dopierre | Christophe Gravier | Wilfried Logerais
Proceedings of the 59th Annual Meeting of the Association for Computational Linguistics and the 11th International Joint Conference on Natural Language Processing (Volume 1: Long Papers)

Recent research considers few-shot intent detection as a meta-learning problem: the model is learning to learn from a consecutive set of small tasks named episodes. In this work, we propose ProtAugment, a meta-learning algorithm for short texts classification (the intent detection task). ProtAugment is a novel extension of Prototypical Networks, that limits overfitting on the bias introduced by the few-shots classification objective at each episode. It relies on diverse paraphrasing: a conditional language model is first fine-tuned for paraphrasing, and diversity is later introduced at the decoding stage at each meta-learning episode. The diverse paraphrasing is unsupervised as it is applied to unlabelled data, and then fueled to the Prototypical Network training objective as a consistency loss. ProtAugment is the state-of-the-art method for intent detection meta-learning, at no extra labeling efforts and without the need to fine-tune a conditional language model on a given application domain.


pdf bib
Few-shot Pseudo-Labeling for Intent Detection
Thomas Dopierre | Christophe Gravier | Julien Subercaze | Wilfried Logerais
Proceedings of the 28th International Conference on Computational Linguistics

In this paper, we introduce a state-of-the-art pseudo-labeling technique for few-shot intent detection. We devise a folding/unfolding hierarchical clustering algorithm which assigns weighted pseudo-labels to unlabeled user utterances. We show that our two-step method yields significant improvement over existing solutions. This performance is achieved on multiple intent detection datasets, even in more challenging situations where the number of classes is large or when the dataset is highly imbalanced. Moreover, we confirm this results on the more general text classification task. We also demonstrate that our approach nicely complements existing solutions, thereby providing an even stronger state-of-the-art ensemble method.