Thomas Hartvigsen


pdf bib
ToxiGen: A Large-Scale Machine-Generated Dataset for Adversarial and Implicit Hate Speech Detection
Thomas Hartvigsen | Saadia Gabriel | Hamid Palangi | Maarten Sap | Dipankar Ray | Ece Kamar
Proceedings of the 60th Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers)

Toxic language detection systems often falsely flag text that contains minority group mentions as toxic, as those groups are often the targets of online hate. Such over-reliance on spurious correlations also causes systems to struggle with detecting implicitly toxic language.To help mitigate these issues, we create ToxiGen, a new large-scale and machine-generated dataset of 274k toxic and benign statements about 13 minority groups. We develop a demonstration-based prompting framework and an adversarial classifier-in-the-loop decoding method to generate subtly toxic and benign text with a massive pretrained language model. Controlling machine generation in this way allows ToxiGen to cover implicitly toxic text at a larger scale, and about more demographic groups, than previous resources of human-written text. We conduct a human evaluation on a challenging subset of ToxiGen and find that annotators struggle to distinguish machine-generated text from human-written language. We also find that 94.5% of toxic examples are labeled as hate speech by human annotators. Using three publicly-available datasets, we show that finetuning a toxicity classifier on our data improves its performance on human-written data substantially. We also demonstrate that ToxiGen can be used to fight machine-generated toxicity as finetuning improves the classifier significantly on our evaluation subset.

pdf bib
TWEET-FID: An Annotated Dataset for Multiple Foodborne Illness Detection Tasks
Ruofan Hu | Dongyu Zhang | Dandan Tao | Thomas Hartvigsen | Hao Feng | Elke Rundensteiner
Proceedings of the Thirteenth Language Resources and Evaluation Conference

Foodborne illness is a serious but preventable public health problem – with delays in detecting the associated outbreaks resulting in productivity loss, expensive recalls, public safety hazards, and even loss of life. While social media is a promising source for identifying unreported foodborne illnesses, there is a dearth of labeled datasets for developing effective outbreak detection models. To accelerate the development of machine learning-based models for foodborne outbreak detection, we thus present TWEET-FID (TWEET-Foodborne Illness Detection), the first publicly available annotated dataset for multiple foodborne illness incident detection tasks. TWEET-FID collected from Twitter is annotated with three facets: tweet class, entity type, and slot type, with labels produced by experts as well as by crowdsource workers. We introduce several domain tasks leveraging these three facets: text relevance classification (TRC), entity mention detection (EMD), and slot filling (SF). We describe the end-to-end methodology for dataset design, creation, and labeling for supporting model development for these tasks. A comprehensive set of results for these tasks leveraging state-of-the-art single-and multi-task deep learning methods on the TWEET-FID dataset are provided. This dataset opens opportunities for future research in foodborne outbreak detection.


pdf bib
Human Attention Maps for Text Classification: Do Humans and Neural Networks Focus on the Same Words?
Cansu Sen | Thomas Hartvigsen | Biao Yin | Xiangnan Kong | Elke Rundensteiner
Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics

Motivated by human attention, computational attention mechanisms have been designed to help neural networks adjust their focus on specific parts of the input data. While attention mechanisms are claimed to achieve interpretability, little is known about the actual relationships between machine and human attention. In this work, we conduct the first quantitative assessment of human versus computational attention mechanisms for the text classification task. To achieve this, we design and conduct a large-scale crowd-sourcing study to collect human attention maps that encode the parts of a text that humans focus on when conducting text classification. Based on this new resource of human attention dataset for text classification, YELP-HAT, collected on the publicly available YELP dataset, we perform a quantitative comparative analysis of machine attention maps created by deep learning models and human attention maps. Our analysis offers insights into the relationships between human versus machine attention maps along three dimensions: overlap in word selections, distribution over lexical categories, and context-dependency of sentiment polarity. Our findings open promising future research opportunities ranging from supervised attention to the design of human-centric attention-based explanations.