Thomas Porter
2022
Automatic Error Analysis for Document-level Information Extraction
Aliva Das
|
Xinya Du
|
Barry Wang
|
Kejian Shi
|
Jiayuan Gu
|
Thomas Porter
|
Claire Cardie
Proceedings of the 60th Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers)
Document-level information extraction (IE) tasks have recently begun to be revisited in earnest using the end-to-end neural network techniques that have been successful on their sentence-level IE counterparts. Evaluation of the approaches, however, has been limited in a number of dimensions. In particular, the precision/recall/F1 scores typically reported provide few insights on the range of errors the models make. We build on the work of Kummerfeld and Klein (2013) to propose a transformation-based framework for automating error analysis in document-level event and (N-ary) relation extraction. We employ our framework to compare two state-of-the-art document-level template-filling approaches on datasets from three domains; and then, to gauge progress in IE since its inception 30 years ago, vs. four systems from the MUC-4 (1992) evaluation.
Search
Fix data
Co-authors
- Claire Cardie 1
- Aliva Das 1
- Xinya Du 1
- Jiayuan Gu 1
- Kejian Shi 1
- show all...
Venues
- acl1