Thomas van Dongen


2020

pdf bib
SChuBERT: Scholarly Document Chunks with BERT-encoding boost Citation Count Prediction.
Thomas van Dongen | Gideon Maillette de Buy Wenniger | Lambert Schomaker
Proceedings of the First Workshop on Scholarly Document Processing

Predicting the number of citations of scholarly documents is an upcoming task in scholarly document processing. Besides the intrinsic merit of this information, it also has a wider use as an imperfect proxy for quality which has the advantage of being cheaply available for large volumes of scholarly documents. Previous work has dealt with number of citations prediction with relatively small training data sets, or larger datasets but with short, incomplete input text. In this work we leverage the open access ACL Anthology collection in combination with the Semantic Scholar bibliometric database to create a large corpus of scholarly documents with associated citation information and we propose a new citation prediction model called SChuBERT. In our experiments we compare SChuBERT with several state-of-the-art citation prediction models and show that it outperforms previous methods by a large margin. We also show the merit of using more training data and longer input for number of citations prediction.

pdf bib
Structure-Tags Improve Text Classification for Scholarly Document Quality Prediction
Gideon Maillette de Buy Wenniger | Thomas van Dongen | Eleri Aedmaa | Herbert Teun Kruitbosch | Edwin A. Valentijn | Lambert Schomaker
Proceedings of the First Workshop on Scholarly Document Processing

Training recurrent neural networks on long texts, in particular scholarly documents, causes problems for learning. While hierarchical attention networks (HANs) are effective in solving these problems, they still lose important information about the structure of the text. To tackle these problems, we propose the use of HANs combined with structure-tags which mark the role of sentences in the document. Adding tags to sentences, marking them as corresponding to title, abstract or main body text, yields improvements over the state-of-the-art for scholarly document quality prediction. The proposed system is applied to the task of accept/reject prediction on the PeerRead dataset and compared against a recent BiLSTM-based model and joint textual+visual model as well as against plain HANs. Compared to plain HANs, accuracy increases on all three domains. On the computation and language domain our new model works best overall, and increases accuracy 4.7% over the best literature result. We also obtain improvements when introducing the tags for prediction of the number of citations for 88k scientific publications that we compiled from the Allen AI S2ORC dataset. For our HAN-system with structure-tags we reach 28.5% explained variance, an improvement of 1.8% over our reimplementation of the BiLSTM-based model as well as 1.0% improvement over plain HANs.