Thomas Zenkel


2021

pdf bib
Automatic Bilingual Markup Transfer
Thomas Zenkel | Joern Wuebker | John DeNero
Findings of the Association for Computational Linguistics: EMNLP 2021

We describe the task of bilingual markup transfer, which involves placing markup tags from a source sentence into a fixed target translation. This task arises in practice when a human translator generates the target translation without markup, and then the system infers the placement of markup tags. This task contrasts from previous work in which markup transfer is performed jointly with machine translation. We propose two novel metrics and evaluate several approaches based on unsupervised word alignments as well as a supervised neural sequence-to-sequence model. Our best approach achieves an average accuracy of 94.7% across six language pairs, indicating its potential usefulness for real-world localization tasks.

2020

pdf bib
End-to-End Neural Word Alignment Outperforms GIZA++
Thomas Zenkel | Joern Wuebker | John DeNero
Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics

Word alignment was once a core unsupervised learning task in natural language processing because of its essential role in training statistical machine translation (MT) models. Although unnecessary for training neural MT models, word alignment still plays an important role in interactive applications of neural machine translation, such as annotation transfer and lexicon injection. While statistical MT methods have been replaced by neural approaches with superior performance, the twenty-year-old GIZA++ toolkit remains a key component of state-of-the-art word alignment systems. Prior work on neural word alignment has only been able to outperform GIZA++ by using its output during training. We present the first end-to-end neural word alignment method that consistently outperforms GIZA++ on three data sets. Our approach repurposes a Transformer model trained for supervised translation to also serve as an unsupervised word alignment model in a manner that is tightly integrated and does not affect translation quality.

2018

pdf bib
KIT Lecture Translator: Multilingual Speech Translation with One-Shot Learning
Florian Dessloch | Thanh-Le Ha | Markus Müller | Jan Niehues | Thai-Son Nguyen | Ngoc-Quan Pham | Elizabeth Salesky | Matthias Sperber | Sebastian Stüker | Thomas Zenkel | Alexander Waibel
Proceedings of the 27th International Conference on Computational Linguistics: System Demonstrations

In today’s globalized world we have the ability to communicate with people across the world. However, in many situations the language barrier still presents a major issue. For example, many foreign students coming to KIT to study are initially unable to follow a lecture in German. Therefore, we offer an automatic simultaneous interpretation service for students. To fulfill this task, we have developed a low-latency translation system that is adapted to lectures and covers several language pairs. While the switch from traditional Statistical Machine Translation to Neural Machine Translation (NMT) significantly improved performance, to integrate NMT into the speech translation framework required several adjustments. We have addressed the run-time constraints and different types of input. Furthermore, we utilized one-shot learning to easily add new topic-specific terms to the system. Besides better performance, NMT also enabled us increase our covered languages through multilingual NMT. % Combining these techniques, we are able to provide an adapted speech translation system for several European languages.

2017

pdf bib
The 2017 KIT IWSLT Speech-to-Text Systems for English and German
Thai-Son Nguyen | Markus Müller | Matthias Sperber | Thomas Zenkel | Sebastian Stüker | Alex Waibel
Proceedings of the 14th International Conference on Spoken Language Translation

This paper describes our German and English Speech-to-Text (STT) systems for the 2017 IWSLT evaluation campaign. The campaign focuses on the transcription of unsegmented lecture talks. Our setup includes systems using both the Janus and Kaldi frameworks. We combined the outputs using both ROVER [1] and confusion network combination (CNC) [2] to achieve a good overall performance. The individual subsystems are built by using different speaker-adaptive feature combination (e.g., lMEL with i-vector or bottleneck speaker vector), acoustic models (GMM or DNN) and speaker adaptation (MLLR or fMLLR). Decoding is performed in two stages, where the GMM and DNN systems are adapted on the combination of the first stage outputs using MLLR, and fMLLR. The combination setup produces a final hypothesis that has a significantly lower WER than any of the individual sub-systems. For the English lecture task, our best combination system has a WER of 8.3% on the tst2015 development set while our other combinations gained 25.7% WER for German lecture tasks.

2016

pdf bib
The 2016 KIT IWSLT Speech-to-Text Systems for English and German
Thai-Son Nguyen | Markus Müller | Matthias Sperber | Thomas Zenkel | Kevin Kilgour | Sebastian Stüker | Alex Waibel
Proceedings of the 13th International Conference on Spoken Language Translation

This paper describes our German and English Speech-to-Text (STT) systems for the 2016 IWSLT evaluation campaign. The campaign focuses on the transcription of unsegmented TED talks. Our setup includes systems using both the Janus and Kaldi frameworks. We combined the outputs using both ROVER [1] and confusion network combination (CNC) [2] to archieve a good overall performance. The individual subsystems are built by using different speaker-adaptive feature combination (e.g., lMEL with i-vector or bottleneck speaker vector), acoustic models (GMM or DNN) and speaker adaption (MLLR or fMLLR). Decoding is performed in two stages, where the GMM and DNN systems are adapted on the combination of the first stage outputs using MLLR, and fMLLR. The combination setup produces a final hypothesis that has a significantly lower WER than any of the individual subsystems. For the English TED task, our best combination system has a WER of 7.8% on the development set while our other combinations gained 21.8% and 28.7% WERs for the English and German MSLT tasks.