Tian Lan


pdf bib
TaCL: Improving BERT Pre-training with Token-aware Contrastive Learning
Yixuan Su | Fangyu Liu | Zaiqiao Meng | Tian Lan | Lei Shu | Ehsan Shareghi | Nigel Collier
Findings of the Association for Computational Linguistics: NAACL 2022

Masked language models (MLMs) such as BERT have revolutionized the field of Natural Language Understanding in the past few years. However, existing pre-trained MLMs often output an anisotropic distribution of token representations that occupies a narrow subset of the entire representation space. Such token representations are not ideal, especially for tasks that demand discriminative semantic meanings of distinct tokens. In this work, we propose TaCL (Token-aware Contrastive Learning), a novel continual pre-training approach that encourages BERT to learn an isotropic and discriminative distribution of token representations. TaCL is fully unsupervised and requires no additional data. We extensively test our approach on a wide range of English and Chinese benchmarks. The results show that TaCL brings consistent and notable improvements over the original BERT model. Furthermore, we conduct detailed analysis to reveal the merits and inner-workings of our approach.

pdf bib
Cross-Lingual Phrase Retrieval
Heqi Zheng | Xiao Zhang | Zewen Chi | Heyan Huang | Yan Tan | Tian Lan | Wei Wei | Xian-Ling Mao
Proceedings of the 60th Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers)

Cross-lingual retrieval aims to retrieve relevant text across languages. Current methods typically achieve cross-lingual retrieval by learning language-agnostic text representations in word or sentence level. However, how to learn phrase representations for cross-lingual phrase retrieval is still an open problem. In this paper, we propose , a cross-lingual phrase retriever that extracts phrase representations from unlabeled example sentences. Moreover, we create a large-scale cross-lingual phrase retrieval dataset, which contains 65K bilingual phrase pairs and 4.2M example sentences in 8 English-centric language pairs. Experimental results show that outperforms state-of-the-art baselines which utilize word-level or sentence-level representations. also shows impressive zero-shot transferability that enables the model to perform retrieval in an unseen language pair during training. Our dataset, code, and trained models are publicly available at github.com/cwszz/XPR/.


pdf bib
ISTIC’s Triangular Machine Translation System for WMT2021
Hangcheng Guo | Wenbin Liu | Yanqing He | Tian Lan | Hongjiao Xu | Zhenfeng Wu | You Pan
Proceedings of the Sixth Conference on Machine Translation

This paper describes the ISTIC’s submission to the Triangular Machine Translation Task of Russian-to-Chinese machine translation for WMT’ 2021. In order to fully utilize the provided corpora and promote the translation performance from Russian to Chinese, the pivot method is used in our system which pipelines the Russian-to-English translator and the English-to-Chinese translator to form a Russian-to-Chinese translator. Our system is based on the Transformer architecture and several effective strategies are adopted to improve the quality of translation, including corpus filtering, data pre-processing, system combination and model ensemble.