Tianlu Wang


pdf bib
Visual News: Benchmark and Challenges in News Image Captioning
Fuxiao Liu | Yinghan Wang | Tianlu Wang | Vicente Ordonez
Proceedings of the 2021 Conference on Empirical Methods in Natural Language Processing

We propose Visual News Captioner, an entity-aware model for the task of news image captioning. We also introduce Visual News, a large-scale benchmark consisting of more than one million news images along with associated news articles, image captions, author information, and other metadata. Unlike the standard image captioning task, news images depict situations where people, locations, and events are of paramount importance. Our proposed method can effectively combine visual and textual features to generate captions with richer information such as events and entities. More specifically, built upon the Transformer architecture, our model is further equipped with novel multi-modal feature fusion techniques and attention mechanisms, which are designed to generate named entities more accurately. Our method utilizes much fewer parameters while achieving slightly better prediction results than competing methods. Our larger and more diverse Visual News dataset further highlights the remaining challenges in captioning news images.


pdf bib
Double-Hard Debias: Tailoring Word Embeddings for Gender Bias Mitigation
Tianlu Wang | Xi Victoria Lin | Nazneen Fatema Rajani | Bryan McCann | Vicente Ordonez | Caiming Xiong
Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics

Word embeddings derived from human-generated corpora inherit strong gender bias which can be further amplified by downstream models. Some commonly adopted debiasing approaches, including the seminal Hard Debias algorithm, apply post-processing procedures that project pre-trained word embeddings into a subspace orthogonal to an inferred gender subspace. We discover that semantic-agnostic corpus regularities such as word frequency captured by the word embeddings negatively impact the performance of these algorithms. We propose a simple but effective technique, Double Hard Debias, which purifies the word embeddings against such corpus regularities prior to inferring and removing the gender subspace. Experiments on three bias mitigation benchmarks show that our approach preserves the distributional semantics of the pre-trained word embeddings while reducing gender bias to a significantly larger degree than prior approaches.

pdf bib
CAT-Gen: Improving Robustness in NLP Models via Controlled Adversarial Text Generation
Tianlu Wang | Xuezhi Wang | Yao Qin | Ben Packer | Kang Li | Jilin Chen | Alex Beutel | Ed Chi
Proceedings of the 2020 Conference on Empirical Methods in Natural Language Processing (EMNLP)

NLP models are shown to suffer from robustness issues, i.e., a model’s prediction can be easily changed under small perturbations to the input. In this work, we present a Controlled Adversarial Text Generation (CAT-Gen) model that, given an input text, generates adversarial texts through controllable attributes that are known to be invariant to task labels. For example, in order to attack a model for sentiment classification over product reviews, we can use the product categories as the controllable attribute which would not change the sentiment of the reviews. Experiments on real-world NLP datasets demonstrate that our method can generate more diverse and fluent adversarial texts, compared to many existing adversarial text generation approaches. We further use our generated adversarial examples to improve models through adversarial training, and we demonstrate that our generated attacks are more robust against model re-training and different model architectures.


pdf bib
Gender Bias in Contextualized Word Embeddings
Jieyu Zhao | Tianlu Wang | Mark Yatskar | Ryan Cotterell | Vicente Ordonez | Kai-Wei Chang
Proceedings of the 2019 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, Volume 1 (Long and Short Papers)

In this paper, we quantify, analyze and mitigate gender bias exhibited in ELMo’s contextualized word vectors. First, we conduct several intrinsic analyses and find that (1) training data for ELMo contains significantly more male than female entities, (2) the trained ELMo embeddings systematically encode gender information and (3) ELMo unequally encodes gender information about male and female entities. Then, we show that a state-of-the-art coreference system that depends on ELMo inherits its bias and demonstrates significant bias on the WinoBias probing corpus. Finally, we explore two methods to mitigate such gender bias and show that the bias demonstrated on WinoBias can be eliminated.


pdf bib
Gender Bias in Coreference Resolution: Evaluation and Debiasing Methods
Jieyu Zhao | Tianlu Wang | Mark Yatskar | Vicente Ordonez | Kai-Wei Chang
Proceedings of the 2018 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, Volume 2 (Short Papers)

In this paper, we introduce a new benchmark for co-reference resolution focused on gender bias, WinoBias. Our corpus contains Winograd-schema style sentences with entities corresponding to people referred by their occupation (e.g. the nurse, the doctor, the carpenter). We demonstrate that a rule-based, a feature-rich, and a neural coreference system all link gendered pronouns to pro-stereotypical entities with higher accuracy than anti-stereotypical entities, by an average difference of 21.1 in F1 score. Finally, we demonstrate a data-augmentation approach that, in combination with existing word-embedding debiasing techniques, removes the bias demonstrated by these systems in WinoBias without significantly affecting their performance on existing datasets.


pdf bib
Men Also Like Shopping: Reducing Gender Bias Amplification using Corpus-level Constraints
Jieyu Zhao | Tianlu Wang | Mark Yatskar | Vicente Ordonez | Kai-Wei Chang
Proceedings of the 2017 Conference on Empirical Methods in Natural Language Processing

Language is increasingly being used to de-fine rich visual recognition problems with supporting image collections sourced from the web. Structured prediction models are used in these tasks to take advantage of correlations between co-occurring labels and visual input but risk inadvertently encoding social biases found in web corpora. In this work, we study data and models associated with multilabel object classification and visual semantic role labeling. We find that (a) datasets for these tasks contain significant gender bias and (b) models trained on these datasets further amplify existing bias. For example, the activity cooking is over 33% more likely to involve females than males in a training set, and a trained model further amplifies the disparity to 68% at test time. We propose to inject corpus-level constraints for calibrating existing structured prediction models and design an algorithm based on Lagrangian relaxation for collective inference. Our method results in almost no performance loss for the underlying recognition task but decreases the magnitude of bias amplification by 47.5% and 40.5% for multilabel classification and visual semantic role labeling, respectively。


pdf bib
Name Tagging for Low-resource Incident Languages based on Expectation-driven Learning
Boliang Zhang | Xiaoman Pan | Tianlu Wang | Ashish Vaswani | Heng Ji | Kevin Knight | Daniel Marcu
Proceedings of the 2016 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies