Tianqi Wang
2023
Weighted Contrastive Learning With False Negative Control to Help Long-tailed Product Classification
Tianqi Wang
|
Lei Chen
|
Xiaodan Zhu
|
Younghun Lee
|
Jing Gao
Proceedings of the 61st Annual Meeting of the Association for Computational Linguistics (Volume 5: Industry Track)
Item categorization (IC) aims to classify product descriptions into leaf nodes in a categorical taxonomy, which is a key technology used in a wide range of applications. Along with the fact that most datasets often has a long-tailed distribution, classification performances on tail labels tend to be poor due to scarce supervision, causing many issues in real-life applications. To address IC task’s long-tail issue, K-positive contrastive loss (KCL) is proposed on image classification task and can be applied on the IC task when using text-based contrastive learning, e.g., SimCSE. However, one shortcoming of using KCL has been neglected in previous research: false negative (FN) instances may harm the KCL’s representation learning. To address the FN issue in the KCL, we proposed to re-weight the positive pairs in the KCL loss with a regularization that the sum of weights should be constrained to K+1 as close as possible. After controlling FN instances with the proposed method, IC performance has been further improved and is superior to other LT-addressing methods.
2019
Inject Rubrics into Short Answer Grading System
Tianqi Wang
|
Naoya Inoue
|
Hiroki Ouchi
|
Tomoya Mizumoto
|
Kentaro Inui
Proceedings of the 2nd Workshop on Deep Learning Approaches for Low-Resource NLP (DeepLo 2019)
Short Answer Grading (SAG) is a task of scoring students’ answers in examinations. Most existing SAG systems predict scores based only on the answers, including the model used as base line in this paper, which gives the-state-of-the-art performance. But they ignore important evaluation criteria such as rubrics, which play a crucial role for evaluating answers in real-world situations. In this paper, we present a method to inject information from rubrics into SAG systems. We implement our approach on top of word-level attention mechanism to introduce the rubric information, in order to locate information in each answer that are highly related to the score. Our experimental results demonstrate that injecting rubric information effectively contributes to the performance improvement and that our proposed model outperforms the state-of-the-art SAG model on the widely used ASAP-SAS dataset under low-resource settings.