Tianyang Han
2024
MLLM-Protector: Ensuring MLLM’s Safety without Hurting Performance
Renjie Pi
|
Tianyang Han
|
Jianshu Zhang
|
Yueqi Xie
|
Rui Pan
|
Qing Lian
|
Hanze Dong
|
Jipeng Zhang
|
Tong Zhang
Proceedings of the 2024 Conference on Empirical Methods in Natural Language Processing
The deployment of multimodal large language models (MLLMs) has brought forth a unique vulnerability: susceptibility to malicious attacks through visual inputs. This paper investigates the novel challenge of defending MLLMs against such attacks. Compared to large language models (LLMs), MLLMs include an additional image modality. We discover that images act as a “foreign language” that is not considered during safety alignment, making MLLMs more prone to producing harmful responses. Unfortunately, unlike the discrete tokens considered in text-based LLMs, the continuous nature of image signals presents significant alignment challenges, which poses difficulty to thoroughly cover all possible scenarios. This vulnerability is exacerbated by the fact that most state-of-the-art MLLMs are fine-tuned on limited image-text pairs that are much fewer than the extensive text-based pretraining corpus, which makes the MLLMs more prone to catastrophic forgetting of their original abilities during safety fine-tuning. To tackle these challenges, we introduce MLLM-Protector, a plug-and-play strategy that solves two subtasks: 1) identifying harmful responses via a lightweight harm detector, and 2) transforming harmful responses into harmless ones via a detoxifier. This approach effectively mitigates the risks posed by malicious visual inputs without compromising the original performance of MLLMs. Our results demonstrate that MLLM-Protector offers a robust solution to a previously unaddressed aspect of MLLM security.
The Instinctive Bias: Spurious Images lead to Illusion in MLLMs
Tianyang Han
|
Qing Lian
|
Rui Pan
|
Renjie Pi
|
Jipeng Zhang
|
Shizhe Diao
|
Yong Lin
|
Tong Zhang
Proceedings of the 2024 Conference on Empirical Methods in Natural Language Processing
Large language models (LLMs) have recently experienced remarkable progress, where the advent of multi-modal large language models (MLLMs) has endowed LLMs with visual capabilities, leading to impressive performances in various multi-modal tasks. However, those powerful MLLMs such as GPT-4V still fail spectacularly when presented with certain image and text inputs. In this paper, we identify a typical class of inputs that baffles MLLMs, which consist of images that are highly relevant but inconsistent with answers, causing MLLMs to suffer from visual illusion. To quantify the effect, we propose CorrelationQA, the first benchmark that assesses the visual illusion level given spurious images. This benchmark contains 7,308 text-image pairs across 13 categories. Based on the proposed CorrelationQA, we conduct a thorough analysis on 9 mainstream MLLMs, illustrating that they universally suffer from this instinctive bias to varying degrees. We hope that our curated benchmark and evaluation results aid in better assessments of the MLLMs’ robustness in the presence of misleading images. The code and datasets are available at https://github.com/MasaiahHan/CorrelationQA.
Search
Co-authors
- Renjie Pi 2
- Rui Pan 2
- Qing Lian 2
- Jipeng Zhang 2
- Tong Zhang 2
- show all...