Tianyang Liu
2024
Dynamic Rewarding with Prompt Optimization Enables Tuning-free Self-Alignment of Language Models
Somanshu Singla
|
Zhen Wang
|
Tianyang Liu
|
Abdullah Ashfaq
|
Zhiting Hu
|
Eric P. Xing
Proceedings of the 2024 Conference on Empirical Methods in Natural Language Processing
Aligning Large Language Models (LLMs) traditionally relies on complex and costly training processes like supervised fine-tuning (SFT) and reinforcement learning from human feedback (RLHF). To address the challenge of achieving alignment without these extensive tuning costs and expensive annotations, we present a novel, tuning-free approach for self-alignment called Dynamic Rewarding with Prompt Optimization (DRPO). Our approach enables self-alignment through a search-based prompt optimization framework, allowing the model to self-improve and generate optimized prompts without additional training or human supervision. The core of DRPO leverages a dynamic rewarding mechanism to identify and rectify model-specific alignment weaknesses, enabling LLMs to adapt quickly to various alignment challenges. Empirical evaluations on eight recent LLMs, including both open- and closed-source, reveal that DRPO significantly enhances alignment performance, enabling base models to outperform their SFT/RLHF-tuned counterparts. Moreover, DRPO’s automatically optimized prompts surpass those curated by human experts, demonstrating its superior alignment capabilities. Our findings envision a highly cost-effective and adaptable solution for future alignment research to be further explored.
Explicit Inductive Inference using Large Language Models
Tianyang Liu
|
Tianyi Li
|
Liang Cheng
|
Mark Steedman
Findings of the Association for Computational Linguistics: EMNLP 2024
Large Language Models (LLMs) are reported to hold undesirable attestation bias on inference tasks: when asked to predict if a premise P entails a hypothesis H, instead of considering H‘s conditional truthfulness entailed by P, LLMs tend to use the out-of-context truth label of H as a fragile proxy. In this paper, we propose a pipeline that exploits this bias to do explicit inductive inference. Our pipeline uses an LLM to transform a premise into a set of attested alternatives, and then aggregate answers of the derived new entailment inquiries to support the original inference prediction. On a directional predicate entailment benchmark, we demonstrate that by applying this simple pipeline, we can improve the overall performance of LLMs on inference and substantially alleviate the impact of their attestation bias.
Rethinking Tabular Data Understanding with Large Language Models
Tianyang Liu
|
Fei Wang
|
Muhao Chen
Proceedings of the 2024 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies (Volume 1: Long Papers)
Large Language Models (LLMs) have shown to be capable of various tasks, yet their capability in interpreting and reasoning over tabular data remains an underexplored area. In this context, this study investigates from three core perspectives: the robustness of LLMs to structural perturbations in tables, the comparative analysis of textual and symbolic reasoning on tables, and the potential of boosting model performance through the aggregation of multiple reasoning pathways. We discover that structural variance of tables presenting the same content reveals a notable performance decline, particularly in symbolic reasoning tasks. This prompts the proposal of a method for table structure normalization. Moreover, textual reasoning slightly edges out symbolic reasoning, and a detailed error analysis reveals that each exhibits different strengths depending on the specific tasks. Notably, the aggregation of textual and symbolic reasoning pathways, bolstered by a mix self-consistency mechanism, resulted in achieving SOTA performance, with an accuracy of 73.6% on WikiTableQuestions, representing a substantial advancement over previous existing table processing paradigms of LLMs.
Search
Co-authors
- Somanshu Singla 1
- Zhen Wang 1
- Abdullah Ashfaq 1
- Zhiting Hu 1
- Eric Xing 1
- show all...