Tianyi Luo


2022

pdf bib
Interpretable Research Replication Prediction via Variational Contextual Consistency Sentence Masking
Tianyi Luo | Rui Meng | Xin Wang | Yang Liu
Findings of the Association for Computational Linguistics: ACL 2022

Research Replication Prediction (RRP) is the task of predicting whether a published research result can be replicated or not. Building an interpretable neural text classifier for RRP promotes the understanding of why a research paper is predicted as replicable or non-replicable and therefore makes its real-world application more reliable and trustworthy. However, the prior works on model interpretation mainly focused on improving the model interpretability at the word/phrase level, which are insufficient especially for long research papers in RRP. Furthermore, the existing methods cannot utilize a large size of unlabeled dataset to further improve the model interpretability. To address these limitations, we aim to build an interpretable neural model which can provide sentence-level explanations and apply weakly supervised approach to further leverage the large corpus of unlabeled datasets to boost the interpretability in addition to improving prediction performance as existing works have done. In this work, we propose the Variational Contextual Consistency Sentence Masking (VCCSM) method to automatically extract key sentences based on the context in the classifier, using both labeled and unlabeled datasets. Results of our experiments on RRP along with European Convention of Human Rights (ECHR) datasets demonstrate that VCCSM is able to improve the model interpretability for the long document classification tasks using the area over the perturbation curve and post-hoc accuracy as evaluation metrics.

2020

pdf bib
Research Replication Prediction Using Weakly Supervised Learning
Tianyi Luo | Xingyu Li | Hainan Wang | Yang Liu
Findings of the Association for Computational Linguistics: EMNLP 2020

Knowing whether a published research result can be replicated is important. Carrying out direct replication of published research incurs a high cost. There are efforts tried to use machine learning aided methods to predict scientific claims’ replicability. However, existing machine learning aided approaches use only hand-extracted statistics features such as p-value, sample size, etc. without utilizing research papers’ text information and train only on a very small size of annotated data without making the most use of a large number of unlabeled articles. Therefore, it is desirable to develop effective machine learning aided automatic methods which can automatically extract text information as features so that we can benefit from Natural Language Processing techniques. Besides, we aim for an approach that benefits from both labeled and the large number of unlabeled data. In this paper, we propose two weakly supervised learning approaches that use automatically extracted text information of research papers to improve the prediction accuracy of research replication using both labeled and unlabeled datasets. Our experiments over real-world datasets show that our approaches obtain much better prediction performance compared to the supervised models utilizing only statistic features and a small size of labeled dataset. Further, we are able to achieve an accuracy of 75.76% for predicting the replicability of research.

2015

pdf bib
Stochastic Top-k ListNet
Tianyi Luo | Dong Wang | Rong Liu | Yiqiao Pan
Proceedings of the 2015 Conference on Empirical Methods in Natural Language Processing