Tianyi Tang


pdf bib
BAMBOO: A Comprehensive Benchmark for Evaluating Long Text Modeling Capacities of Large Language Models
Zican Dong | Tianyi Tang | Junyi Li | Wayne Xin Zhao | Ji-Rong Wen
Proceedings of the 2024 Joint International Conference on Computational Linguistics, Language Resources and Evaluation (LREC-COLING 2024)

Large language models (LLMs) have achieved dramatic proficiency over NLP tasks with normal length. Recently, multiple studies have committed to extending the context length and enhancing the long text modeling capabilities of LLMs. To comprehensively evaluate the long context ability of LLMs, we propose BAMBOO, a multi-task long context benchmark. BAMBOO has been designed with four principles: comprehensive capacity evaluation, avoidance of data contamination, accurate automatic evaluation, and different length levels. It consists of 10 datasets from 5 different long text understanding tasks, i.e., question answering, hallucination detection, text sorting, language modeling, and code completion, to cover various domains and core capacities of LLMs. We conduct experiments with five widely-used long-context models and further discuss five key questions for long text research. In the end, we discuss problems of current long-context models and point out future directions for enhancing long text modeling capacities. We release our data, prompts, and code at https://anonymous.4open.science/r/BAMBOO/.

pdf bib
Not All Metrics Are Guilty: Improving NLG Evaluation by Diversifying References
Tianyi Tang | Hongyuan Lu | Yuchen Jiang | Haoyang Huang | Dongdong Zhang | Xin Zhao | Tom Kocmi | Furu Wei
Proceedings of the 2024 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies (Volume 1: Long Papers)

Most research about natural language generation (NLG) relies on evaluation benchmarks with limited references for a sample, which may result in poor correlations with human judgements. The underlying reason is that one semantic meaning can actually be expressed in different forms, and the evaluation with a single or few references may not accurately reflect the quality of the model’s hypotheses. To address this issue, this paper presents a simple and effective method, named **Div-Ref**, to enhance existing evaluation benchmarks by enriching the number of references. We leverage large language models (LLMs) to diversify the expression of a single reference into multiple high-quality ones to cover the semantic space of the reference sentence as much as possible. We conduct comprehensive experiments to empirically demonstrate that diversifying the expression of reference can significantly enhance the correlation between automatic evaluation and human evaluation. This idea is compatible with recent LLM-based evaluation which can similarly derive advantages from incorporating multiple references. *We strongly encourage future generation benchmarks to include more references, even if they are generated by LLMs, which is once for all.* We release all the code and data at https://github.com/RUCAIBox/Div-Ref to facilitate research.


pdf bib
The Web Can Be Your Oyster for Improving Language Models
Junyi Li | Tianyi Tang | Wayne Xin Zhao | Jingyuan Wang | Jian-Yun Nie | Ji-Rong Wen
Findings of the Association for Computational Linguistics: ACL 2023

Pretrained language models (PLMs) encode a large amount of world knowledge. However, as such knowledge is frozen at the time of model training, the models become static and limited by the training data at that time. In order to further improve the capacity of PLMs for knowledge-intensive tasks, we consider augmenting PLMs with the large-scale web using search engine. Unlike previous augmentation sources (e.g., Wikipedia data dump), the web provides broader, more comprehensive and constantly updated information. In this paper, we present a web-augmented PLM – UniWeb, which is trained over 16 knowledge-intensive tasks in a unified text-to-text format. Instead of simply using the retrieved contents from web, our approach has made two major improvements. Firstly, we propose an adaptive search engine assisted learning method that can self-evaluate the confidence level of PLM’s predictions, and adaptively determine when to refer to the web for more data, which can avoid useless or noisy augmentation from web. Secondly, we design a pretraining task, i.e., continual knowledge learning, based on salient spans prediction, to reduce the discrepancy between the encoded and retrieved knowledge. Experiments on a wide range of knowledge-intensive tasks show that our model significantly outperforms previous retrieval-augmented methods.

pdf bib
MVP: Multi-task Supervised Pre-training for Natural Language Generation
Tianyi Tang | Junyi Li | Wayne Xin Zhao | Ji-Rong Wen
Findings of the Association for Computational Linguistics: ACL 2023

Pre-trained language models (PLMs) have achieved remarkable success in natural language generation (NLG) tasks. Up to now, most NLG-oriented PLMs are pre-trained in an unsupervised manner using the large-scale general corpus. In the meanwhile, an increasing number of models pre-trained with labeled data (i.e. “supervised pre-training”) showcase superior performance compared to unsupervised pre-trained models. Motivated by the success of supervised pre-training, we propose Multi-task superVised Pre-training (MVP) for natural language generation. We collect a large-scale natural language generation corpus, MVPCorpus, from 77 datasets over 11 diverse NLG tasks. Then we unify these examples into a general text-to-text format to pre-train the text generation model MVP in a supervised manner. For each task, we further pre-train specific soft prompts to stimulate the model’s capacity to perform a specific task. Our MVP model can be seen as a practice that utilizes recent instruction tuning on relatively small PLMs. Extensive experiments have demonstrated the effectiveness and generality of our MVP model in a number of NLG tasks, which achieves state-of-the-art performance on 13 out of 17 datasets, outperforming BART by 9.3% and Flan-T5 by 5.8%.

pdf bib
Zero-shot Visual Question Answering with Language Model Feedback
Yifan Du | Junyi Li | Tianyi Tang | Wayne Xin Zhao | Ji-Rong Wen
Findings of the Association for Computational Linguistics: ACL 2023

In this paper, we propose a novel language model guided captioning approach, LAMOC, for knowledge-based visual question answering (VQA). Our approach employs the generated captions by a captioning model as the context of an answer prediction model, which is a Pre-Trained Language model (PLM). As the major contribution, we leverage the guidance and feedback of the prediction model to improve the capability of the captioning model. In this way, the captioning model can become aware of the task goal and information need from the PLM. To develop our approach, we design two specific training stages, where the first stage adapts the captioning model to the prediction model (selecting more suitable caption propositions for training) and the second stage tunes the captioning model according to the task goal (learning from feedback of the PLM). Extensive experiments demonstrate the effectiveness of the proposed approach on the knowledge-based VQA task. Specifically, on the challenging A-OKVQA dataset, LAMOC outperforms several competitive zero-shot methods and even achieves comparable results to a fine-tuned VLP model. Our code is publicly available at https://github.com/RUCAIBox/LAMOC.

pdf bib
Not All Languages Are Created Equal in LLMs: Improving Multilingual Capability by Cross-Lingual-Thought Prompting
Haoyang Huang | Tianyi Tang | Dongdong Zhang | Xin Zhao | Ting Song | Yan Xia | Furu Wei
Findings of the Association for Computational Linguistics: EMNLP 2023

Large language models (LLMs) demonstrate impressive multilingual capability, but their performance varies substantially across different languages. In this work, we introduce a simple yet effective method, called cross-lingual-thought prompting (XLT), to systematically improve the multilingual capability of LLMs. Specifically, XLT is a generic template prompt that stimulates cross-lingual and logical reasoning skills to enhance task performance across languages. We conduct comprehensive evaluations on 7 typical benchmarks related to reasoning, understanding, and generation tasks, covering both high-resource and low-resource languages. Experimental results show that XLT not only remarkably enhances the performance of various multilingual tasks but also significantly reduces the gap between the average performance and the best performance of each task in different languages. Notably, XLT brings over 10 points of average improvement in arithmetic reasoning and open-domain question-answering tasks.

pdf bib
Learning to Imagine: Visually-Augmented Natural Language Generation
Tianyi Tang | Yushuo Chen | Yifan Du | Junyi Li | Wayne Xin Zhao | Ji-Rong Wen
Proceedings of the 61st Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers)

People often imagine relevant scenes to aid in the writing process. In this work, we aim to utilize visual information for composition in the same manner as humans. We propose a method, LIVE, that makes pre-trained language models (PLMs) Learn to Imagine for Visually-augmented natural language gEneration. First, we imagine the scene based on the text: we use a diffusion model to synthesize high-quality images conditioned on the input texts. Second, we use CLIP to determine whether the text can evoke the imagination in a posterior way. Finally, our imagination is dynamic, and we conduct synthesis for each sentence rather than generate only one image for an entire paragraph. Technically, we propose a novel plug-and-play fusion layer to obtain visually-augmented representations for each text. Our vision-text fusion layer is compatible with Transformer-based architecture. We have conducted extensive experiments on four generation tasks using BART and T5, and the automatic results and human evaluation demonstrate the effectiveness of our proposed method. We will release the code, model, and data at the link: https://github.com/RUCAIBox/LIVE.


pdf bib
Learning to Transfer Prompts for Text Generation
Junyi Li | Tianyi Tang | Jian-Yun Nie | Ji-Rong Wen | Xin Zhao
Proceedings of the 2022 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies

Pretrained language models (PLMs) have made remarkable progress in text generation tasks via fine-tuning. While, it is challenging to fine-tune PLMs in a data-scarce situation. Therefore, it is non-trivial to develop a general and lightweight model that can adapt to various text generation tasks based on PLMs. To fulfill this purpose, the recent prompt-based learning offers a potential solution. In this paper, we improve this technique and propose a novel prompt-based method (PTG) for text generation in a transferable setting. First, PTG learns a set of source prompts for various source generation tasks and then transfers these prompts as target prompts to perform target generation tasks. To consider both task- and instance-level information, we design an adaptive attention mechanism to derive the target prompts. For each data instance, PTG learns a specific target prompt by attending to highly relevant source prompts. In extensive experiments, PTG yields competitive or better results than fine-tuning methods. We release our source prompts as an open resource, where users can add or reuse them to improve new text generation tasks for future research. Code and data can be available at https://github.com/RUCAIBox/Transfer-Prompts-for-Text-Generation.

pdf bib
ElitePLM: An Empirical Study on General Language Ability Evaluation of Pretrained Language Models
Junyi Li | Tianyi Tang | Zheng Gong | Lixin Yang | Zhuohao Yu | Zhipeng Chen | Jingyuan Wang | Xin Zhao | Ji-Rong Wen
Proceedings of the 2022 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies

Nowadays, pretrained language models (PLMs) have dominated the majority of NLP tasks. While, little research has been conducted on systematically evaluating the language abilities of PLMs. In this paper, we present a large-scale empirical study on general language ability evaluation of PLMs (ElitePLM). In our study, we design four evaluation dimensions, memory, comprehension, reasoning, and composition, to measure ten widely-used PLMs within five categories. Our empirical results demonstrate that: (1) PLMs with varying training objectives and strategies are good at different ability tests; (2) fine-tuning PLMs in downstream tasks is usually sensitive to the data size and distribution; (3) PLMs have excellent transferability between similar tasks. Moreover, the prediction results of PLMs in our experiments are released as an open resource for more deep and detailed analysis on the language abilities of PLMs. This paper can guide the future work to select, apply, and design PLMs for specific tasks. We have made all the details of experiments publicly available at https://github.com/RUCAIBox/ElitePLM.

pdf bib
ELMER: A Non-Autoregressive Pre-trained Language Model for Efficient and Effective Text Generation
Junyi Li | Tianyi Tang | Wayne Xin Zhao | Jian-Yun Nie | Ji-Rong Wen
Proceedings of the 2022 Conference on Empirical Methods in Natural Language Processing

We study the text generation task under the approach of pre-trained language models (PLMs). Typically, an auto-regressive (AR) method is adopted for generating texts in a token-by-token manner. Despite many advantages of AR generation, it usually suffers from inefficient inference. Therefore, non-autoregressive (NAR) models are proposed to generate all target tokens simultaneously. However, NAR models usually generate texts of lower quality due to the absence of token dependency in the output text. In this paper, we propose ELMER: an efficient and effective PLM for NAR text generation to explicitly model the token dependency during NAR generation. By leveraging the early exit technique, ELMER enables the token generations at different layers, according to their prediction confidence (a more confident token will exit at a lower layer). Besides, we propose a novel pre-training objective, Layer Permutation Language Modeling, to pre-train ELMER by permuting the exit layer for each token in sequences. Experiments on three text generation tasks show that ELMER significantly outperforms NAR models and further narrows the performance gap with AR PLMs (ELMER (29.92) vs BART (30.61) ROUGE-L in XSUM) while achieving over 10 times inference speedup.

pdf bib
TextBox 2.0: A Text Generation Library with Pre-trained Language Models
Tianyi Tang | Junyi Li | Zhipeng Chen | Yiwen Hu | Zhuohao Yu | Wenxun Dai | Wayne Xin Zhao | Jian-yun Nie | Ji-rong Wen
Proceedings of the 2022 Conference on Empirical Methods in Natural Language Processing: System Demonstrations

To facilitate research on text generation, this paper presents a comprehensive and unified library, TextBox 2.0, focusing on the use of pre-trained language models (PLMs). To be comprehensive, our library covers 13 common text generation tasks and their corresponding 83 datasets and further incorporates 45 PLMs covering general, translation, Chinese, dialogue, controllable, distilled, prompting, and lightweight PLMs. We also implement 4 efficient training strategies and provide 4 generation objectives for pre-training new PLMs from scratch. To be unified, we design the interfaces to support the entire research pipeline (from data loading to training and evaluation), ensuring that each step can be fulfilled in a unified way. Despite the rich functionality, it is easy to use our library, either through the friendly Python API or command line. To validate the effectiveness of our library, we conduct extensive experiments and exemplify four types of research scenarios. The project is released at the link: https://github.com/RUCAIBox/TextBox#2.0.

pdf bib
Context-Tuning: Learning Contextualized Prompts for Natural Language Generation
Tianyi Tang | Junyi Li | Wayne Xin Zhao | Ji-Rong Wen
Proceedings of the 29th International Conference on Computational Linguistics

Recently, pretrained language models (PLMs) have had exceptional success in language generation. To leverage the rich knowledge encoded by PLMs, a simple yet powerful paradigm is to use prompts in the form of either discrete tokens or continuous embeddings. In existing studies, these prompting methods are typically independent of the inputs, lacking sufficient consideration of input semantics. To address this issue, we propose a novel continuous prompting approach, called context-tuning, to fine-tuning PLMs for natural language generation. Firstly, the prompts are derived based on the input text to elicit useful knowledge from PLMs for generation. We refer to such prompts as contextualized prompts. Secondly, we use continuous inverse prompting to improve the process of natural language generation by modeling an inverse generation process from output to input, making the generated text more relevant to the inputs. Furthermore, we utilize a lightweight context-tuning method that fine-tunes only 0.12% of the parameters while maintaining good performance. Our code is publicly available at https://github.com/RUCAIBox/Context-Tuning.


pdf bib
TextBox: A Unified, Modularized, and Extensible Framework for Text Generation
Junyi Li | Tianyi Tang | Gaole He | Jinhao Jiang | Xiaoxuan Hu | Puzhao Xie | Zhipeng Chen | Zhuohao Yu | Wayne Xin Zhao | Ji-Rong Wen
Proceedings of the 59th Annual Meeting of the Association for Computational Linguistics and the 11th International Joint Conference on Natural Language Processing: System Demonstrations

In this paper, we release an open-source library, called TextBox, to provide a unified, modularized, and extensible text generation framework. TextBox aims to support a broad set of text generation tasks and models. In our library, we implement 21 text generation models on 9 benchmark datasets, covering the categories of VAE, GAN, and pretrained language models. Meanwhile, our library maintains sufficient modularity and extensibility by properly decomposing the model architecture, inference, and learning process into highly reusable modules, which allows users to easily incorporate new models into our framework. The above features make TextBox especially suitable for researchers and practitioners to quickly reproduce baseline models and develop new models. TextBox is implemented based on PyTorch, and released under Apache License 2.0 at the link https://github.com/RUCAIBox/TextBox.

pdf bib
Few-shot Knowledge Graph-to-Text Generation with Pretrained Language Models
Junyi Li | Tianyi Tang | Wayne Xin Zhao | Zhicheng Wei | Nicholas Jing Yuan | Ji-Rong Wen
Findings of the Association for Computational Linguistics: ACL-IJCNLP 2021