Tianyu Cao


pdf bib
FolkScope: Intention Knowledge Graph Construction for E-commerce Commonsense Discovery
Changlong Yu | Weiqi Wang | Xin Liu | Jiaxin Bai | Yangqiu Song | Zheng Li | Yifan Gao | Tianyu Cao | Bing Yin
Findings of the Association for Computational Linguistics: ACL 2023

Understanding users’ intentions in e-commerce platforms requires commonsense knowledge. In this paper, we present FolkScope, an intention knowledge graph construction framework, to reveal the structure of humans’ minds about purchasing items. As commonsense knowledge is usually ineffable and not expressed explicitly, it is challenging to perform information extraction. Thus, we propose a new approach that leverages the generation power of large language models (LLMs) and human-in-the-loop annotation to semi-automatically construct the knowledge graph. LLMs first generate intention assertions via e-commerce specific prompts to explain shopping behaviors, where the intention can be an open reason or a predicate falling into one of 18 categories aligning with ConceptNet, e.g., IsA, MadeOf, UsedFor, etc. Then we annotate plausibility and typicality labels of sampled intentions as training data in order to populate human judgments to all automatic generations. Last, to structurize the assertions, we propose pattern mining and conceptualization to form more condensed and abstract knowledge. Extensive evaluations and study demonstrate that our constructed knowledge graph can well model e-commerce knowledge and have many potential applications.


pdf bib
Multilingual Knowledge Graph Completion with Self-Supervised Adaptive Graph Alignment
Zijie Huang | Zheng Li | Haoming Jiang | Tianyu Cao | Hanqing Lu | Bing Yin | Karthik Subbian | Yizhou Sun | Wei Wang
Proceedings of the 60th Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers)

Predicting missing facts in a knowledge graph (KG) is crucial as modern KGs are far from complete. Due to labor-intensive human labeling, this phenomenon deteriorates when handling knowledge represented in various languages. In this paper, we explore multilingual KG completion, which leverages limited seed alignment as a bridge, to embrace the collective knowledge from multiple languages. However, language alignment used in prior works is still not fully exploited: (1) alignment pairs are treated equally to maximally push parallel entities to be close, which ignores KG capacity inconsistency; (2) seed alignment is scarce and new alignment identification is usually in a noisily unsupervised manner. To tackle these issues, we propose a novel self-supervised adaptive graph alignment (SS-AGA) method. Specifically, SS-AGA fuses all KGs as a whole graph by regarding alignment as a new edge type. As such, information propagation and noise influence across KGs can be adaptively controlled via relation-aware attention weights. Meanwhile, SS-AGA features a new pair generator that dynamically captures potential alignment pairs in a self-supervised paradigm. Extensive experiments on both the public multilingual DBPedia KG and newly-created industrial multilingual E-commerce KG empirically demonstrate the effectiveness of SS-AGA


pdf bib
Named Entity Recognition with Small Strongly Labeled and Large Weakly Labeled Data
Haoming Jiang | Danqing Zhang | Tianyu Cao | Bing Yin | Tuo Zhao
Proceedings of the 59th Annual Meeting of the Association for Computational Linguistics and the 11th International Joint Conference on Natural Language Processing (Volume 1: Long Papers)

Weak supervision has shown promising results in many natural language processing tasks, such as Named Entity Recognition (NER). Existing work mainly focuses on learning deep NER models only with weak supervision, i.e., without any human annotation, and shows that by merely using weakly labeled data, one can achieve good performance, though still underperforms fully supervised NER with manually/strongly labeled data. In this paper, we consider a more practical scenario, where we have both a small amount of strongly labeled data and a large amount of weakly labeled data. Unfortunately, we observe that weakly labeled data does not necessarily improve, or even deteriorate the model performance (due to the extensive noise in the weak labels) when we train deep NER models over a simple or weighted combination of the strongly labeled and weakly labeled data. To address this issue, we propose a new multi-stage computational framework – NEEDLE with three essential ingredients: (1) weak label completion, (2) noise-aware loss function, and (3) final fine-tuning over the strongly labeled data. Through experiments on E-commerce query NER and Biomedical NER, we demonstrate that NEEDLE can effectively suppress the noise of the weak labels and outperforms existing methods. In particular, we achieve new SOTA F1-scores on 3 Biomedical NER datasets: BC5CDR-chem 93.74, BC5CDR-disease 90.69, NCBI-disease 92.28.

pdf bib
MetaTS: Meta Teacher-Student Network for Multilingual Sequence Labeling with Minimal Supervision
Zheng Li | Danqing Zhang | Tianyu Cao | Ying Wei | Yiwei Song | Bing Yin
Proceedings of the 2021 Conference on Empirical Methods in Natural Language Processing

Sequence labeling aims to predict a fine-grained sequence of labels for the text. However, such formulation hinders the effectiveness of supervised methods due to the lack of token-level annotated data. This is exacerbated when we meet a diverse range of languages. In this work, we explore multilingual sequence labeling with minimal supervision using a single unified model for multiple languages. Specifically, we propose a Meta Teacher-Student (MetaTS) Network, a novel meta learning method to alleviate data scarcity by leveraging large multilingual unlabeled data. Prior teacher-student frameworks of self-training rely on rigid teaching strategies, which may hardly produce high-quality pseudo-labels for consecutive and interdependent tokens. On the contrary, MetaTS allows the teacher to dynamically adapt its pseudo-annotation strategies by the student’s feedback on the generated pseudo-labeled data of each language and thus mitigate error propagation from noisy pseudo-labels. Extensive experiments on both public and real-world multilingual sequence labeling datasets empirically demonstrate the effectiveness of MetaTS.