Tianyu Gao


2023

pdf bib
Should You Mask 15% in Masked Language Modeling?
Alexander Wettig | Tianyu Gao | Zexuan Zhong | Danqi Chen
Proceedings of the 17th Conference of the European Chapter of the Association for Computational Linguistics

Masked language models (MLMs) conventionally mask 15% of tokens due to the belief that more masking would leave insufficient context to learn good representations; this masking rate has been widely used, regardless of model sizes or masking strategies. In this work, we revisit this important choice of MLM pre-training. We first establish that 15% is not universally optimal, and larger models should adopt a higher masking rate. Specifically, we find that masking 40% outperforms 15% for BERT-large size models on GLUE and SQuAD. Interestingly, an extremely high masking rate of 80% can still preserve 95% fine-tuning performance and most of the accuracy in linguistic probing, challenging the conventional wisdom about the role of the masking rate. We then examine the interplay between masking rates and masking strategies and find that uniform masking requires a higher masking rate compared to sophisticated masking strategies such as span or PMI masking. Finally, we argue that increasing the masking rate has two distinct effects: it leads to more corruption, which makes the prediction task more difficult; it also enables more predictions, which benefits optimization. Using this framework, we revisit BERT’s 80-10-10 corruption strategy. Together, our results contribute to a better understanding of MLM pre-training.

pdf bib
Enabling Large Language Models to Generate Text with Citations
Tianyu Gao | Howard Yen | Jiatong Yu | Danqi Chen
Proceedings of the 2023 Conference on Empirical Methods in Natural Language Processing

Large language models (LLMs) have emerged as a widely-used tool for information seeking, but their generated outputs are prone to hallucination. In this work, our aim is to allow LLMs to generate text with citations, improving their factual correctness and verifiability. Existing work mainly relies on commercial search engines and human evaluation, making it challenging to reproduce and compare different modeling approaches. We propose ALCE, the first benchmark for Automatic LLMs’ Citation Evaluation. ALCE collects a diverse set of questions and retrieval corpora and requires building end-to-end systems to retrieve supporting evidence and generate answers with citations. We develop automatic metrics along three dimensions—fluency, correctness, and citation quality—and demonstrate their strong correlation with human judgements. Our experiments with state-of-the-art LLMs and novel prompting strategies show that current systems have considerable room for improvement—For example, on the ELI5 dataset, even the best models lack complete citation support 50% of the time. Our analyses further highlight promising future directions, including developing better retrievers, advancing long-context LLMs, and improving the ability to synthesize information from multiple sources.

pdf bib
The CRINGE Loss: Learning what language not to model
Leonard Adolphs | Tianyu Gao | Jing Xu | Kurt Shuster | Sainbayar Sukhbaatar | Jason Weston
Proceedings of the 61st Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers)

Standard language model training employs gold human documents or human-human interaction data, and treats all training data as positive examples. Growing evidence shows that even with very large amounts of positive training data, issues remain that can be alleviated with relatively small amounts of negative data – examples of what the model should not do. In this work, we propose a novel procedure to train with such data called the “CRINGE” loss (ContRastive Iterative Negative GEneration). We show the effectiveness of this approach across three different experiments on the tasks of safe generation, contradiction avoidance, and open-domain dialogue. Our models outperform multiple strong baselines and are conceptually simple, easy to train and implement.

pdf bib
MoQA: Benchmarking Multi-Type Open-Domain Question Answering
Howard Yen | Tianyu Gao | Jinhyuk Lee | Danqi Chen
Proceedings of the Third DialDoc Workshop on Document-grounded Dialogue and Conversational Question Answering

Previous research on open-domain question answering (QA) mainly focuses on questions with short answers. However, information-seeking QA often requires various formats of answers depending on the nature of the questions, e.g., why/how questions typically require a long answer. In this paper, we present MoQA, a benchmark for open-domain QA that requires building one system that can provide short, medium, long, and yes/no answers to different questions accordingly. MoQA builds upon Natural Questions with multiple types of questions and additional crowdsourcing efforts to ensure high query quality. We adapt state-of-the-art models, and reveal unique findings in multi-type open-domain QA: (1) For retriever-reader models, training one retriever on all types achieves the overall best performance, but it is challenging to train one reader model to output answers of different formats, or to train a question classifier to distinguish between types; (2) An end-to-end closed-book QA model trained on multiple types struggles with the task across the board; (3) State-of-the-art large language models such as the largest GPT-3 models (Brown et al., 2020; Ouyang et al., 2022) also lag behind open-book QA models. Our benchmark and analysis call for more effort into building versatile open-domain QA models in the future.

pdf bib
What In-Context Learning “Learns” In-Context: Disentangling Task Recognition and Task Learning
Jane Pan | Tianyu Gao | Howard Chen | Danqi Chen
Findings of the Association for Computational Linguistics: ACL 2023

Large language models (LLMs) exploit in-context learning (ICL) to solve tasks with only a few demonstrations, but its mechanisms are not yet well-understood. Some works suggest that LLMs only recall already learned concepts from pre-training, while others hint that ICL performs implicit learning over demonstrations. We characterize two ways through which ICL leverages demonstrations. Task recognition (TR) captures the extent to which LLMs can recognize a task through demonstrations – even without ground-truth labels – and apply their pre-trained priors, whereas task learning (TL) is the ability to capture new input-label mappings unseen in pre-training. Using a wide range of classification datasets and three LLM families (GPT-3, LLaMA and OPT), we design controlled experiments to disentangle the roles of TR and TL in ICL. We show that (1) models can achieve non-trivial performance with only TR, and TR does not further improve with larger models or more demonstrations; (2) LLMs acquire TL as the model scales, and TL’s performance consistently improves with more demonstrations in context. Our findings unravel two different forces behind ICL and we advocate for discriminating them in future ICL research due to their distinct nature.

2022

pdf bib
Automatic Label Sequence Generation for Prompting Sequence-to-sequence Models
Zichun Yu | Tianyu Gao | Zhengyan Zhang | Yankai Lin | Zhiyuan Liu | Maosong Sun | Jie Zhou
Proceedings of the 29th International Conference on Computational Linguistics

Prompting, which casts downstream applications as language modeling tasks, has shown to be sample efficient compared to standard fine-tuning with pre-trained models. However, one pitfall of prompting is the need of manually-designed patterns, whose outcome can be unintuitive and requires large validation sets to tune. To tackle the challenge, we propose AutoSeq, a fully automatic prompting method: (1) We adopt natural language prompts on sequence-to-sequence models, enabling free-form generation and larger label search space; (2) We propose label sequences – phrases with indefinite lengths to verbalize the labels – which eliminate the need of manual templates and are more expressive than single label words; (3) We use beam search to automatically generate a large amount of label sequence candidates and propose contrastive re-ranking to get the best combinations. AutoSeq significantly outperforms other no-manual-design methods, such as soft prompt tuning, adapter tuning, and automatic search on single label words; the generated label sequences are even better than curated manual ones on a variety of tasks. Our method reveals the potential of sequence-to-sequence models in few-shot learning and sheds light on a path to generic and automatic prompting. The source code of this paper can be obtained from https://github.com/thunlp/Seq2Seq-Prompt.

pdf bib
Ditch the Gold Standard: Re-evaluating Conversational Question Answering
Huihan Li | Tianyu Gao | Manan Goenka | Danqi Chen
Proceedings of the 60th Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers)

Conversational question answering aims to provide natural-language answers to users in information-seeking conversations. Existing conversational QA benchmarks compare models with pre-collected human-human conversations, using ground-truth answers provided in conversational history. It remains unclear whether we can rely on this static evaluation for model development and whether current systems can well generalize to real-world human-machine conversations. In this work, we conduct the first large-scale human evaluation of state-of-the-art conversational QA systems, where human evaluators converse with models and judge the correctness of their answers. We find that the distribution of human machine conversations differs drastically from that of human-human conversations, and there is a disagreement between human and gold-history evaluation in terms of model ranking. We further investigate how to improve automatic evaluations, and propose a question rewriting mechanism based on predicted history, which better correlates with human judgments. Finally, we analyze the impact of various modeling strategies and discuss future directions towards building better conversational question answering systems.

2021

pdf bib
Manual Evaluation Matters: Reviewing Test Protocols of Distantly Supervised Relation Extraction
Tianyu Gao | Xu Han | Yuzhuo Bai | Keyue Qiu | Zhiyu Xie | Yankai Lin | Zhiyuan Liu | Peng Li | Maosong Sun | Jie Zhou
Findings of the Association for Computational Linguistics: ACL-IJCNLP 2021

pdf bib
KEPLER: A Unified Model for Knowledge Embedding and Pre-trained Language Representation
Xiaozhi Wang | Tianyu Gao | Zhaocheng Zhu | Zhengyan Zhang | Zhiyuan Liu | Juanzi Li | Jian Tang
Transactions of the Association for Computational Linguistics, Volume 9

Pre-trained language representation models (PLMs) cannot well capture factual knowledge from text. In contrast, knowledge embedding (KE) methods can effectively represent the relational facts in knowledge graphs (KGs) with informative entity embeddings, but conventional KE models cannot take full advantage of the abundant textual information. In this paper, we propose a unified model for Knowledge Embedding and Pre-trained LanguagERepresentation (KEPLER), which can not only better integrate factual knowledge into PLMs but also produce effective text-enhanced KE with the strong PLMs. In KEPLER, we encode textual entity descriptions with a PLM as their embeddings, and then jointly optimize the KE and language modeling objectives. Experimental results show that KEPLER achieves state-of-the-art performances on various NLP tasks, and also works remarkably well as an inductive KE model on KG link prediction. Furthermore, for pre-training and evaluating KEPLER, we construct Wikidata5M1 , a large-scale KG dataset with aligned entity descriptions, and benchmark state-of-the-art KE methods on it. It shall serve as a new KE benchmark and facilitate the research on large KG, inductive KE, and KG with text. The source code can be obtained from https://github.com/THU-KEG/KEPLER.

pdf bib
Making Pre-trained Language Models Better Few-shot Learners
Tianyu Gao | Adam Fisch | Danqi Chen
Proceedings of the 59th Annual Meeting of the Association for Computational Linguistics and the 11th International Joint Conference on Natural Language Processing (Volume 1: Long Papers)

The recent GPT-3 model (Brown et al., 2020) achieves remarkable few-shot performance solely by leveraging a natural-language prompt and a few task demonstrations as input context. Inspired by their findings, we study few-shot learning in a more practical scenario, where we use smaller language models for which fine-tuning is computationally efficient. We present LM-BFF—better few-shot fine-tuning of language models—a suite of simple and complementary techniques for fine-tuning language models on a small number of annotated examples. Our approach includes (1) prompt-based fine-tuning together with a novel pipeline for automating prompt generation; and (2) a refined strategy for dynamically and selectively incorporating demonstrations into each context. Finally, we present a systematic evaluation for analyzing few-shot performance on a range of NLP tasks, including classification and regression. Our experiments demonstrate that our methods combine to dramatically outperform standard fine-tuning procedures in this low resource setting, achieving up to 30% absolute improvement, and 11% on average across all tasks. Our approach makes minimal assumptions on task resources and domain expertise, and hence constitutes a strong task-agnostic method for few-shot learning.

pdf bib
SimCSE: Simple Contrastive Learning of Sentence Embeddings
Tianyu Gao | Xingcheng Yao | Danqi Chen
Proceedings of the 2021 Conference on Empirical Methods in Natural Language Processing

This paper presents SimCSE, a simple contrastive learning framework that greatly advances the state-of-the-art sentence embeddings. We first describe an unsupervised approach, which takes an input sentence and predicts itself in a contrastive objective, with only standard dropout used as noise. This simple method works surprisingly well, performing on par with previous supervised counterparts. We find that dropout acts as minimal data augmentation and removing it leads to a representation collapse. Then, we propose a supervised approach, which incorporates annotated pairs from natural language inference datasets into our contrastive learning framework, by using “entailment” pairs as positives and “contradiction” pairs as hard negatives. We evaluate SimCSE on standard semantic textual similarity (STS) tasks, and our unsupervised and supervised models using BERT base achieve an average of 76.3% and 81.6% Spearman’s correlation respectively, a 4.2% and 2.2% improvement compared to previous best results. We also show—both theoretically and empirically—that contrastive learning objective regularizes pre-trained embeddings’ anisotropic space to be more uniform, and it better aligns positive pairs when supervised signals are available.

2020

pdf bib
More Data, More Relations, More Context and More Openness: A Review and Outlook for Relation Extraction
Xu Han | Tianyu Gao | Yankai Lin | Hao Peng | Yaoliang Yang | Chaojun Xiao | Zhiyuan Liu | Peng Li | Jie Zhou | Maosong Sun
Proceedings of the 1st Conference of the Asia-Pacific Chapter of the Association for Computational Linguistics and the 10th International Joint Conference on Natural Language Processing

Relational facts are an important component of human knowledge, which are hidden in vast amounts of text. In order to extract these facts from text, people have been working on relation extraction (RE) for years. From early pattern matching to current neural networks, existing RE methods have achieved significant progress. Yet with explosion of Web text and emergence of new relations, human knowledge is increasing drastically, and we thus require “more” from RE: a more powerful RE system that can robustly utilize more data, efficiently learn more relations, easily handle more complicated context, and flexibly generalize to more open domains. In this paper, we look back at existing RE methods, analyze key challenges we are facing nowadays, and show promising directions towards more powerful RE. We hope our view can advance this field and inspire more efforts in the community.

pdf bib
Learning from Context or Names? An Empirical Study on Neural Relation Extraction
Hao Peng | Tianyu Gao | Xu Han | Yankai Lin | Peng Li | Zhiyuan Liu | Maosong Sun | Jie Zhou
Proceedings of the 2020 Conference on Empirical Methods in Natural Language Processing (EMNLP)

Neural models have achieved remarkable success on relation extraction (RE) benchmarks. However, there is no clear understanding what information in text affects existing RE models to make decisions and how to further improve the performance of these models. To this end, we empirically study the effect of two main information sources in text: textual context and entity mentions (names). We find that (i) while context is the main source to support the predictions, RE models also heavily rely on the information from entity mentions, most of which is type information, and (ii) existing datasets may leak shallow heuristics via entity mentions and thus contribute to the high performance on RE benchmarks. Based on the analyses, we propose an entity-masked contrastive pre-training framework for RE to gain a deeper understanding on both textual context and type information while avoiding rote memorization of entities or use of superficial cues in mentions. We carry out extensive experiments to support our views, and show that our framework can improve the effectiveness and robustness of neural models in different RE scenarios. All the code and datasets are released at https://github.com/thunlp/RE-Context-or-Names.

pdf bib
Continual Relation Learning via Episodic Memory Activation and Reconsolidation
Xu Han | Yi Dai | Tianyu Gao | Yankai Lin | Zhiyuan Liu | Peng Li | Maosong Sun | Jie Zhou
Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics

Continual relation learning aims to continually train a model on new data to learn incessantly emerging novel relations while avoiding catastrophically forgetting old relations. Some pioneering work has proved that storing a handful of historical relation examples in episodic memory and replaying them in subsequent training is an effective solution for such a challenging problem. However, these memory-based methods usually suffer from overfitting the few memorized examples of old relations, which may gradually cause inevitable confusion among existing relations. Inspired by the mechanism in human long-term memory formation, we introduce episodic memory activation and reconsolidation (EMAR) to continual relation learning. Every time neural models are activated to learn both new and memorized data, EMAR utilizes relation prototypes for memory reconsolidation exercise to keep a stable understanding of old relations. The experimental results show that EMAR could get rid of catastrophically forgetting old relations and outperform the state-of-the-art continual learning models.

pdf bib
Meta-Information Guided Meta-Learning for Few-Shot Relation Classification
Bowen Dong | Yuan Yao | Ruobing Xie | Tianyu Gao | Xu Han | Zhiyuan Liu | Fen Lin | Leyu Lin | Maosong Sun
Proceedings of the 28th International Conference on Computational Linguistics

Few-shot classification requires classifiers to adapt to new classes with only a few training instances. State-of-the-art meta-learning approaches such as MAML learn how to initialize and fast adapt parameters from limited instances, which have shown promising results in few-shot classification. However, existing meta-learning models solely rely on implicit instance-based statistics, and thus suffer from instance unreliability and weak interpretability. To solve this problem, we propose a novel meta-information guided meta-learning (MIML) framework, where semantic concepts of classes provide strong guidance for meta-learning in both initialization and adaptation. In effect, our model can establish connections between instance-based information and semantic-based information, which enables more effective initialization and faster adaptation. Comprehensive experimental results on few-shot relation classification demonstrate the effectiveness of the proposed framework. Notably, MIML achieves comparable or superior performance to humans with only one shot on FewRel evaluation.

2019

pdf bib
FewRel 2.0: Towards More Challenging Few-Shot Relation Classification
Tianyu Gao | Xu Han | Hao Zhu | Zhiyuan Liu | Peng Li | Maosong Sun | Jie Zhou
Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing and the 9th International Joint Conference on Natural Language Processing (EMNLP-IJCNLP)

We present FewRel 2.0, a more challenging task to investigate two aspects of few-shot relation classification models: (1) Can they adapt to a new domain with only a handful of instances? (2) Can they detect none-of-the-above (NOTA) relations? To construct FewRel 2.0, we build upon the FewRel dataset by adding a new test set in a quite different domain, and a NOTA relation choice. With the new dataset and extensive experimental analysis, we found (1) that the state-of-the-art few-shot relation classification models struggle on these two aspects, and (2) that the commonly-used techniques for domain adaptation and NOTA detection still cannot handle the two challenges well. Our research calls for more attention and further efforts to these two real-world issues. All details and resources about the dataset and baselines are released at https://github.com/thunlp/fewrel.

pdf bib
OpenNRE: An Open and Extensible Toolkit for Neural Relation Extraction
Xu Han | Tianyu Gao | Yuan Yao | Deming Ye | Zhiyuan Liu | Maosong Sun
Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing and the 9th International Joint Conference on Natural Language Processing (EMNLP-IJCNLP): System Demonstrations

OpenNRE is an open-source and extensible toolkit that provides a unified framework to implement neural models for relation extraction (RE). Specifically, by implementing typical RE methods, OpenNRE not only allows developers to train custom models to extract structured relational facts from the plain text but also supports quick model validation for researchers. Besides, OpenNRE provides various functional RE modules based on both TensorFlow and PyTorch to maintain sufficient modularity and extensibility, making it becomes easy to incorporate new models into the framework. Besides the toolkit, we also release an online system to meet real-time extraction without any training and deploying. Meanwhile, the online system can extract facts in various scenarios as well as aligning the extracted facts to Wikidata, which may benefit various downstream knowledge-driven applications (e.g., information retrieval and question answering). More details of the toolkit and online system can be obtained from http://github.com/thunlp/OpenNRE.