Tianyu Pang
2024
Model Balancing Helps Low-data Training and Fine-tuning
Zihang Liu
|
Yuanzhe Hu
|
Tianyu Pang
|
Yefan Zhou
|
Pu Ren
|
Yaoqing Yang
Proceedings of the 2024 Conference on Empirical Methods in Natural Language Processing
Recent advances in foundation models have emphasized the need to align pre-trained models with specialized domains using small, curated datasets. Studies on these foundation models underscore the importance of low-data training and fine-tuning. This topic, well-known in natural language processing (NLP), has also gained increasing attention in the emerging field of scientific machine learning (SciML). To address the limitations of low-data training and fine-tuning, we draw inspiration from Heavy-Tailed Self-Regularization (HT-SR) theory, analyzing the shape of empirical spectral densities (ESDs) and revealing an imbalance in training quality across different model layers. To mitigate this issue, we adapt a recently proposed layer-wise learning rate scheduler, TempBalance, which effectively balances training quality across layers and enhances low-data training and fine-tuning for both NLP and SciML tasks. Notably, TempBalance demonstrates increasing performance gains as the amount of available tuning data decreases. Comparative analyses further highlight the effectiveness of TempBalance and its adaptability as an “add-on” method for improving model performance.
Self-Distillation Bridges Distribution Gap in Language Model Fine-Tuning
Zhaorui Yang
|
Tianyu Pang
|
Haozhe Feng
|
Han Wang
|
Wei Chen
|
Minfeng Zhu
|
Qian Liu
Proceedings of the 62nd Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers)
The surge in Large Language Models (LLMs) has revolutionized natural language processing, but fine-tuning them for specific tasks often encounters challenges in balancing performance and preserving general instruction-following abilities. In this paper, we posit that the distribution gap between task datasets and the LLMs serves as the primary underlying cause. To address the problem, we introduce Self-Distillation Fine-Tuning (SDFT), a novel approach that bridges the distribution gap by guiding fine-tuning with a distilled dataset generated by the model itself to match its original distribution. Experimental results on the Llama-2-chat model across various benchmarks demonstrate that SDFT effectively mitigates catastrophic forgetting while achieving comparable or superior performance on downstream tasks compared to the vanilla fine-tuning. Moreover, SDFT demonstrates the potential to maintain the helpfulness and safety alignment of LLMs. Our code is available at https://github.com/sail-sg/sdft.
Search
Co-authors
- Zihang Liu 1
- Yuanzhe Hu 1
- Yefan Zhou 1
- Pu Ren 1
- Yaoqing Yang 1
- show all...