Tibor Bosse


2025

pdf bib
How Well Can Large Language Models Reflect? A Human Evaluation of LLM-generated Reflections for Motivational Interviewing Dialogues
Erkan Basar | Xin Sun | Iris Hendrickx | Jan de Wit | Tibor Bosse | Gert-Jan De Bruijn | Jos A. Bosch | Emiel Krahmer
Proceedings of the 31st International Conference on Computational Linguistics

Motivational Interviewing (MI) is a counseling technique that promotes behavioral change through reflective responses to mirror or refine client statements. While advanced Large Language Models (LLMs) can generate engaging dialogues, challenges remain for applying them in a sensitive context such as MI. This work assesses the potential of LLMs to generate MI reflections via three LLMs: GPT-4, Llama-2, and BLOOM, and explores the effect of dialogue context size and integration of MI strategies for reflection generation by LLMs. We conduct evaluations using both automatic metrics and human judges on four criteria: appropriateness, relevance, engagement, and naturalness, to assess whether these LLMs can accurately generate the nuanced therapeutic communication required in MI. While we demonstrate LLMs’ potential in generating MI reflections comparable to human therapists, content analysis shows that significant challenges remain. By identifying the strengths and limitations of LLMs in generating empathetic and contextually appropriate reflections in MI, this work contributes to the ongoing dialogue in enhancing LLM’s role in therapeutic counseling.

2024

pdf bib
To What Extent Are Large Language Models Capable of Generating Substantial Reflections for Motivational Interviewing Counseling Chatbots? A Human Evaluation
Erkan Basar | Iris Hendrickx | Emiel Krahmer | Gert-Jan Bruijn | Tibor Bosse
Proceedings of the 1st Human-Centered Large Language Modeling Workshop

Motivational Interviewing is a counselling style that requires skillful usage of reflective listening and engaging in conversations about sensitive and personal subjects. In this paper, we investigate to what extent we can use generative large language models in motivational interviewing chatbots to generate precise and variable reflections on user responses. We conduct a two-step human evaluation where we first independently assess the generated reflections based on four criteria essential to health counseling; appropriateness, specificity, naturalness, and engagement. In the second step, we compare the overall quality of generated and human-authored reflections via a ranking evaluation. We use GPT-4, BLOOM, and FLAN-T5 models to generate motivational interviewing reflections, based on real conversational data collected via chatbots designed to provide support for smoking cessation and sexual health. We discover that GPT-4 can produce reflections of a quality comparable to human-authored reflections. Finally, we conclude that large language models have the potential to enhance and expand reflections in predetermined health counseling chatbots, but a comprehensive manual review is advised.