A critical component in the trustworthiness of LLMs is reliable uncertainty communication, yet LLMs often use assertive language when conveying false claims, leading to over-reliance and eroded trust. We present the first systematic study of _faithful confidence calibration_ of LLMs, benchmarking models’ ability to use linguistic expressions of uncertainty that _faithfully reflect_ their intrinsic uncertainty, across a comprehensive array of models, datasets, and prompting strategies. Our results demonstrate that LLMs largely fail at this task, and that existing interventions are insufficient: standard prompt approaches provide only marginal gains, and existing, factuality-based calibration techniques can even harm faithful calibration. To address this critical gap, we introduce MetaFaith, a novel prompt-based calibration approach inspired by human metacognition. We show that MetaFaith robustly improves faithful calibration across diverse models and task domains, enabling up to 61% improvement in faithfulness and achieving an 83% win rate over original generations as judged by humans.
Large language models (LLMs) often mislead users with confident hallucinations. Current approaches to detect hallucination require many samples from the LLM generator, which is computationally infeasible as frontier model sizes and generation lengths continue to grow. We present a remarkably simple baseline for detecting hallucinations in long-form LLM generations, with performance comparable to expensive multi-sample approaches while drawing only a single sample from the LLM generator. Our key finding is that LLM hidden states are highly predictive of factuality in long-form natural language generation and that this information can be efficiently extracted at inference time using a lightweight probe. We benchmark a variety of long-form hallucination detection methods across open-weight models up to 405B parameters and demonstrate that our approach achieves competitive performance with up to 100x fewer FLOPs. Furthermore, our probes generalize to out-of-distribution model outputs, evaluated using hidden states of smaller open-source models. Our results demonstrate the promise of hidden state probes in detecting long-form LLM hallucinations.
We investigate the mechanistic sources of uncertainty in large language models (LLMs), an area with important implications for language model reliability and trustworthiness. To do so, we conduct a series of experiments designed to identify whether the factuality of generated responses and a model’s uncertainty originate in separate or shared circuits in the model architecture. We approach this question by adapting the well-established mechanistic interpretability techniques of causal tracing and zero-ablation to study the effect of different circuits on LLM generations. Our experiments on eight different models and five datasets, representing tasks predominantly requiring factual recall, provide strong evidence that a model’s uncertainty is produced in the same parts of the network that are responsible for the factuality of generated responses.