Tim Klinger


pdf bib
EXPLORER: Exploration-guided Reasoning for Textual Reinforcement Learning
Kinjal Basu | Keerthiram Murugesan | Subhajit Chaudhury | Murray Campbell | Kartik Talamadupula | Tim Klinger
Proceedings of the 18th Conference of the European Chapter of the Association for Computational Linguistics (Volume 1: Long Papers)

Text-based games (TBGs) have emerged as an important collection of NLP tasks, requiring reinforcement learning (RL) agents to combine natural language understanding with reasoning. A key challenge for agents attempting to solve such tasks is to generalize across multiple games and demonstrate good performance on both seen and unseen objects. Purely deep-RL-based approaches may perform well on seen objects; however, they fail to showcase the same performance on unseen objects. Commonsense-infused deep-RL agents may work better on unseen data; unfortunately, their policies are often not interpretable or easily transferable. To tackle these issues, in this paper, we present EXPLORER which is an exploration-guided reasoning agent for textual reinforcement learning. EXPLORER is neuro-symbolic in nature, as it relies on a neural module for exploration and a symbolic module for exploitation. It can also learn generalized symbolic policies and perform well over unseen data. Our experiments show that EXPLORER outperforms the baseline agents on Text-World cooking (TW-Cooking) and Text-World Commonsense (TWC) games.


pdf bib
Laziness Is a Virtue When It Comes to Compositionality in Neural Semantic Parsing
Maxwell Crouse | Pavan Kapanipathi | Subhajit Chaudhury | Tahira Naseem | Ramon Fernandez Astudillo | Achille Fokoue | Tim Klinger
Proceedings of the 61st Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers)

Nearly all general-purpose neural semantic parsers generate logical forms in a strictly top-down autoregressive fashion. Though such systems have achieved impressive results across a variety of datasets and domains, recent works have called into question whether they are ultimately limited in their ability to compositionally generalize. In this work, we approach semantic parsing from, quite literally, the opposite direction; that is, we introduce a neural semantic parsing generation method that constructs logical forms from the bottom up, beginning from the logical form’s leaves. The system we introduce is lazy in that it incrementally builds up a set of potential semantic parses, but only expands and processes the most promising candidate parses at each generation step. Such a parsimonious expansion scheme allows the system to maintain an arbitrarily large set of parse hypotheses that are never realized and thus incur minimal computational overhead. We evaluate our approach on compositional generalization; specifically, on the challenging CFQ dataset and two other Text-to-SQL datasets where we show that our novel, bottom-up semantic parsing technique outperforms general-purpose semantic parsers while also being competitive with semantic parsers that have been tailored to each task.


pdf bib
Recursive Routing Networks: Learning to Compose Modules for Language Understanding
Ignacio Cases | Clemens Rosenbaum | Matthew Riemer | Atticus Geiger | Tim Klinger | Alex Tamkin | Olivia Li | Sandhini Agarwal | Joshua D. Greene | Dan Jurafsky | Christopher Potts | Lauri Karttunen
Proceedings of the 2019 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, Volume 1 (Long and Short Papers)

We introduce Recursive Routing Networks (RRNs), which are modular, adaptable models that learn effectively in diverse environments. RRNs consist of a set of functions, typically organized into a grid, and a meta-learner decision-making component called the router. The model jointly optimizes the parameters of the functions and the meta-learner’s policy for routing inputs through those functions. RRNs can be incorporated into existing architectures in a number of ways; we explore adding them to word representation layers, recurrent network hidden layers, and classifier layers. Our evaluation task is natural language inference (NLI). Using the MultiNLI corpus, we show that an RRN’s routing decisions reflect the high-level genre structure of that corpus. To show that RRNs can learn to specialize to more fine-grained semantic distinctions, we introduce a new corpus of NLI examples involving implicative predicates, and show that the model components become fine-tuned to the inferential signatures that are characteristic of these predicates.