Tim Schlippe


pdf bib
GlobalPhone: Pronunciation Dictionaries in 20 Languages
Tanja Schultz | Tim Schlippe
Proceedings of the Ninth International Conference on Language Resources and Evaluation (LREC'14)

This paper describes the advances in the multilingual text and speech database GlobalPhone, a multilingual database of high-quality read speech with corresponding transcriptions and pronunciation dictionaries in 20 languages. GlobalPhone was designed to be uniform across languages with respect to the amount of data, speech quality, the collection scenario, the transcription and phone set conventions. With more than 400 hours of transcribed audio data from more than 2000 native speakers GlobalPhone supplies an excellent basis for research in the areas of multilingual speech recognition, rapid deployment of speech processing systems to yet unsupported languages, language identification tasks, speaker recognition in multiple languages, multilingual speech synthesis, as well as monolingual speech recognition in a large variety of languages. Very recently the GlobalPhone pronunciation dictionaries have been made available for research and commercial purposes by the European Language Resources Association (ELRA).


pdf bib
Speech recognition for machine translation in Quaero
Lori Lamel | Sandrine Courcinous | Julien Despres | Jean-Luc Gauvain | Yvan Josse | Kevin Kilgour | Florian Kraft | Viet-Bac Le | Hermann Ney | Markus Nußbaum-Thom | Ilya Oparin | Tim Schlippe | Ralf Schlüter | Tanja Schultz | Thiago Fraga da Silva | Sebastian Stüker | Martin Sundermeyer | Bianca Vieru | Ngoc Thang Vu | Alexander Waibel | Cécile Woehrling
Proceedings of the 8th International Workshop on Spoken Language Translation: Evaluation Campaign

This paper describes the speech-to-text systems used to provide automatic transcriptions used in the Quaero 2010 evaluation of Machine Translation from speech. Quaero (www.quaero.org) is a large research and industrial innovation program focusing on technologies for automatic analysis and classification of multimedia and multilingual documents. The ASR transcript is the result of a Rover combination of systems from three teams ( KIT, RWTH, LIMSI+VR) for the French and German languages. The casesensitive word error rates (WER) of the combined systems were respectively 20.8% and 18.1% on the 2010 evaluation data, relative WER reductions of 14.6% and 17.4% respectively over the best component system.


pdf bib
Diacritization as a Machine Translation and as a Sequence Labeling Problem
Tim Schlippe | ThuyLinh Nguyen | Stephan Vogel
Proceedings of the 8th Conference of the Association for Machine Translation in the Americas: Student Research Workshop

In this paper we describe and compare two techniques for the automatic diacritization of Arabic text: First, we treat diacritization as a monotone machine translation problem, proposing and evaluating several translation and language models, including word and character-based models separately and combined as well as a model which uses statistical machine translation (SMT) to post-edit a rule-based diacritization system. Then we explore a more traditional view of diacritization as a sequence labeling problem, and propose a solution using conditional random fields (Lafferty et al., 2001). All these techniques are compared through word error rate and diacritization error rate both in terms of full diacritization and ignoring vowel endings. The empirical experiments showed that the machine translation approaches perform better than the sequence labeling approaches concerning the error rates.