Tim Vieira


2022

pdf bib
Exact Paired-Permutation Testing for Structured Test Statistics
Ran Zmigrod | Tim Vieira | Ryan Cotterell
Proceedings of the 2022 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies

Significance testing—especially the paired-permutation test—has played a vital role in developing NLP systems to provide confidence that the difference in performance between two systems (i.e., the test statistic) is not due to luck. However, practitioners rely on Monte Carlo approximation to perform this test due to a lack of a suitable exact algorithm. In this paper, we provide an efficient exact algorithm for the paired-permutation test for a family of structured test statistics. Our algorithm runs in 𝒪(G N (log GN )(log N)) time where N is the dataset size and G is the range of the test statistic. We found that our exact algorithm was 10x faster than the Monte Carlo approximation with 20000 samples on a common dataset

2021

pdf bib
On Finding the K-best Non-projective Dependency Trees
Ran Zmigrod | Tim Vieira | Ryan Cotterell
Proceedings of the 59th Annual Meeting of the Association for Computational Linguistics and the 11th International Joint Conference on Natural Language Processing (Volume 1: Long Papers)

The connection between the maximum spanning tree in a directed graph and the best dependency tree of a sentence has been exploited by the NLP community. However, for many dependency parsing schemes, an important detail of this approach is that the spanning tree must have exactly one edge emanating from the root. While work has been done to efficiently solve this problem for finding the one-best dependency tree, no research has attempted to extend this solution to finding the K-best dependency trees. This is arguably a more important extension as a larger proportion of decoded trees will not be subject to the root constraint of dependency trees. Indeed, we show that the rate of root constraint violations increases by an average of 13 times when decoding with K=50 as opposed to K=1. In this paper, we provide a simplification of the K-best spanning tree algorithm of Camerini et al. (1980). Our simplification allows us to obtain a constant time speed-up over the original algorithm. Furthermore, we present a novel extension of the algorithm for decoding the K-best dependency trees of a graph which are subject to a root constraint.

pdf bib
Higher-order Derivatives of Weighted Finite-state Machines
Ran Zmigrod | Tim Vieira | Ryan Cotterell
Proceedings of the 59th Annual Meeting of the Association for Computational Linguistics and the 11th International Joint Conference on Natural Language Processing (Volume 2: Short Papers)

Weighted finite-state machines are a fundamental building block of NLP systems. They have withstood the test of time—from their early use in noisy channel models in the 1990s up to modern-day neurally parameterized conditional random fields. This work examines the computation of higher-order derivatives with respect to the normalization constant for weighted finite-state machines. We provide a general algorithm for evaluating derivatives of all orders, which has not been previously described in the literature. In the case of second-order derivatives, our scheme runs in the optimal O(Aˆ2 Nˆ4) time where A is the alphabet size and N is the number of states. Our algorithm is significantly faster than prior algorithms. Additionally, our approach leads to a significantly faster algorithm for computing second-order expectations, such as covariance matrices and gradients of first-order expectations.

pdf bib
Searching for More Efficient Dynamic Programs
Tim Vieira | Ryan Cotterell | Jason Eisner
Findings of the Association for Computational Linguistics: EMNLP 2021

Computational models of human language often involve combinatorial problems. For instance, a probabilistic parser may marginalize over exponentially many trees to make predictions. Algorithms for such problems often employ dynamic programming and are not always unique. Finding one with optimal asymptotic runtime can be unintuitive, time-consuming, and error-prone. Our work aims to automate this laborious process. Given an initial correct declarative program, we search for a sequence of semantics-preserving transformations to improve its running time as much as possible. To this end, we describe a set of program transformations, a simple metric for assessing the efficiency of a transformed program, and a heuristic search procedure to improve this metric. We show that in practice, automated search—like the mental search performed by human programmers—can find substantial improvements to the initial program. Empirically, we show that many speed-ups described in the NLP literature could have been discovered automatically by our system.

pdf bib
Efficient Computation of Expectations under Spanning Tree Distributions
Ran Zmigrod | Tim Vieira | Ryan Cotterell
Transactions of the Association for Computational Linguistics, Volume 9

Abstract We give a general framework for inference in spanning tree models. We propose unified algorithms for the important cases of first-order expectations and second-order expectations in edge-factored, non-projective spanning-tree models. Our algorithms exploit a fundamental connection between gradients and expectations, which allows us to derive efficient algorithms. These algorithms are easy to implement with or without automatic differentiation software. We motivate the development of our framework with several cautionary tales of previous research, which has developed numerous inefficient algorithms for computing expectations and their gradients. We demonstrate how our framework efficiently computes several quantities with known algorithms, including the expected attachment score, entropy, and generalized expectation criteria. As a bonus, we give algorithms for quantities that are missing in the literature, including the KL divergence. In all cases, our approach matches the efficiency of existing algorithms and, in several cases, reduces the runtime complexity by a factor of the sentence length. We validate the implementation of our framework through runtime experiments. We find our algorithms are up to 15 and 9 times faster than previous algorithms for computing the Shannon entropy and the gradient of the generalized expectation objective, respectively.

pdf bib
Conditional Poisson Stochastic Beams
Clara Meister | Afra Amini | Tim Vieira | Ryan Cotterell
Proceedings of the 2021 Conference on Empirical Methods in Natural Language Processing

Beam search is the default decoding strategy for many sequence generation tasks in NLP. The set of approximate K-best items returned by the algorithm is a useful summary of the distribution for many applications; however, the candidates typically exhibit high overlap and may give a highly biased estimate for expectations under our model. These problems can be addressed by instead using stochastic decoding strategies. In this work, we propose a new method for turning beam search into a stochastic process: Conditional Poisson stochastic beam search. Rather than taking the maximizing set at each iteration, we sample K candidates without replacement according to the conditional Poisson sampling design. We view this as a more natural alternative to Kool et al. (2019)’s stochastic beam search (SBS). Furthermore, we show how samples generated under the CPSBS design can be used to build consistent estimators and sample diverse sets from sequence models. In our experiments, we observe CPSBS produces lower variance and more efficient estimators than SBS, even showing improvements in high entropy settings.

pdf bib
Efficient Sampling of Dependency Structure
Ran Zmigrod | Tim Vieira | Ryan Cotterell
Proceedings of the 2021 Conference on Empirical Methods in Natural Language Processing

Probabilistic distributions over spanning trees in directed graphs are a fundamental model of dependency structure in natural language processing, syntactic dependency trees. In NLP, dependency trees often have an additional root constraint: only one edge may emanate from the root. However, no sampling algorithm has been presented in the literature to account for this additional constraint. In this paper, we adapt two spanning tree sampling algorithms to faithfully sample dependency trees from a graph subject to the root constraint. Wilson (1996(’s sampling algorithm has a running time of O(H) where H is the mean hitting time of the graph. Colbourn (1996)’s sampling algorithm has a running time of O(Nˆ3), which is often greater than the mean hitting time of a directed graph. Additionally, we build upon Colbourn’s algorithm and present a novel extension that can sample K trees without replacement in O(K Nˆ3 + Kˆ2 N) time. To the best of our knowledge, no algorithm has been given for sampling spanning trees without replacement from a directed graph.

2020

pdf bib
If beam search is the answer, what was the question?
Clara Meister | Ryan Cotterell | Tim Vieira
Proceedings of the 2020 Conference on Empirical Methods in Natural Language Processing (EMNLP)

Quite surprisingly, exact maximum a posteriori (MAP) decoding of neural language generators frequently leads to low-quality results. Rather, most state-of-the-art results on language generation tasks are attained using beam search despite its overwhelmingly high search error rate. This implies that the MAP objective alone does not express the properties we desire in text, which merits the question: if beam search is the answer, what was the question? We frame beam search as the exact solution to a different decoding objective in order to gain insights into why high probability under a model alone may not indicate adequacy. We find that beam search enforces uniform information density in text, a property motivated by cognitive science. We suggest a set of decoding objectives that explicitly enforce this property and find that exact decoding with these objectives alleviates the problems encountered when decoding poorly calibrated language generation models. Additionally, we analyze the text produced using various decoding strategies and see that, in our neural machine translation experiments, the extent to which this property is adhered to strongly correlates with BLEU.

pdf bib
Please Mind the Root: Decoding Arborescences for Dependency Parsing
Ran Zmigrod | Tim Vieira | Ryan Cotterell
Proceedings of the 2020 Conference on Empirical Methods in Natural Language Processing (EMNLP)

The connection between dependency trees and spanning trees is exploited by the NLP community to train and to decode graph-based dependency parsers. However, the NLP literature has missed an important difference between the two structures: only one edge may emanate from the root in a dependency tree. We analyzed the output of state-of-the-art parsers on many languages from the Universal Dependency Treebank: although these parsers are often able to learn that trees which violate the constraint should be assigned lower probabilities, their ability to do so unsurprisingly de-grades as the size of the training set decreases.In fact, the worst constraint-violation rate we observe is 24%. Prior work has proposed an inefficient algorithm to enforce the constraint, which adds a factor of n to the decoding runtime. We adapt an algorithm due to Gabow and Tarjan (1984) to dependency parsing, which satisfies the constraint without compromising the original runtime.

pdf bib
The Universal Decompositional Semantics Dataset and Decomp Toolkit
Aaron Steven White | Elias Stengel-Eskin | Siddharth Vashishtha | Venkata Subrahmanyan Govindarajan | Dee Ann Reisinger | Tim Vieira | Keisuke Sakaguchi | Sheng Zhang | Francis Ferraro | Rachel Rudinger | Kyle Rawlins | Benjamin Van Durme
Proceedings of the 12th Language Resources and Evaluation Conference

We present the Universal Decompositional Semantics (UDS) dataset (v1.0), which is bundled with the Decomp toolkit (v0.1). UDS1.0 unifies five high-quality, decompositional semantics-aligned annotation sets within a single semantic graph specification—with graph structures defined by the predicative patterns produced by the PredPatt tool and real-valued node and edge attributes constructed using sophisticated normalization procedures. The Decomp toolkit provides a suite of Python 3 tools for querying UDS graphs using SPARQL. Both UDS1.0 and Decomp0.1 are publicly available at http://decomp.io.

pdf bib
Best-First Beam Search
Clara Meister | Tim Vieira | Ryan Cotterell
Transactions of the Association for Computational Linguistics, Volume 8

Decoding for many NLP tasks requires an effective heuristic algorithm for approximating exact search because the problem of searching the full output space is often intractable, or impractical in many settings. The default algorithm for this job is beam search—a pruned version of breadth-first search. Quite surprisingly, beam search often returns better results than exact inference due to beneficial search bias for NLP tasks. In this work, we show that the standard implementation of beam search can be made up to 10x faster in practice. Our method assumes that the scoring function is monotonic in the sequence length, which allows us to safely prune hypotheses that cannot be in the final set of hypotheses early on. We devise effective monotonic approximations to popular nonmonontic scoring functions, including length normalization and mutual information decoding. Lastly, we propose a memory-reduced variant of best-first beam search, which has a similar beneficial search bias in terms of downstream performance, but runs in a fraction of the time.

2017

pdf bib
Learning to Prune: Exploring the Frontier of Fast and Accurate Parsing
Tim Vieira | Jason Eisner
Transactions of the Association for Computational Linguistics, Volume 5

Pruning hypotheses during dynamic programming is commonly used to speed up inference in settings such as parsing. Unlike prior work, we train a pruning policy under an objective that measures end-to-end performance: we search for a fast and accurate policy. This poses a difficult machine learning problem, which we tackle with the lols algorithm. lols training must continually compute the effects of changing pruning decisions: we show how to make this efficient in the constituency parsing setting, via dynamic programming and change propagation algorithms. We find that optimizing end-to-end performance in this way leads to a better Pareto frontier—i.e., parsers which are more accurate for a given runtime.

2016

pdf bib
Universal Decompositional Semantics on Universal Dependencies
Aaron Steven White | Drew Reisinger | Keisuke Sakaguchi | Tim Vieira | Sheng Zhang | Rachel Rudinger | Kyle Rawlins | Benjamin Van Durme
Proceedings of the 2016 Conference on Empirical Methods in Natural Language Processing

pdf bib
Speed-Accuracy Tradeoffs in Tagging with Variable-Order CRFs and Structured Sparsity
Tim Vieira | Ryan Cotterell | Jason Eisner
Proceedings of the 2016 Conference on Empirical Methods in Natural Language Processing

pdf bib
A Joint Model of Orthography and Morphological Segmentation
Ryan Cotterell | Tim Vieira | Hinrich Schütze
Proceedings of the 2016 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies

2015

pdf bib
Reasoning about Quantities in Natural Language
Subhro Roy | Tim Vieira | Dan Roth
Transactions of the Association for Computational Linguistics, Volume 3

Little work from the Natural Language Processing community has targeted the role of quantities in Natural Language Understanding. This paper takes some key steps towards facilitating reasoning about quantities expressed in natural language. We investigate two different tasks of numerical reasoning. First, we consider Quantity Entailment, a new task formulated to understand the role of quantities in general textual inference tasks. Second, we consider the problem of automatically understanding and solving elementary school math word problems. In order to address these quantitative reasoning problems we first develop a computational approach which we show to successfully recognize and normalize textual expressions of quantities. We then use these capabilities to further develop algorithms to assist reasoning in the context of the aforementioned tasks.

2012

pdf bib
Grammarless Parsing for Joint Inference
Jason Naradowsky | Tim Vieira | David Smith
Proceedings of COLING 2012